Fe~0/海藻酸钙微球还原-Fenton氧化协同降解酸性红B
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reduction Cooperated Fenton Oxidation of Zero-valent Iron(ZVI) Immobilized in Alginate Microsphere for Degradation of Acid Red B
  • 作者:张环 ; 李爽 ; 魏俊富 ; 傅敏 ; 李雪曦 ; 丁琦 ; 白蓉
  • 英文作者:ZHANG Huan;LI Shuang-shuang;WEI Jun-fu;FU Min;LI Xue-xi;DING Qi;BAI Rong;School of Environmental and Chemical Engineering,Tianjin Polytechnic University;State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University;Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology,Tianjin Polytechnic University;
  • 关键词:Fe0 ; 海藻酸钙 ; 还原 ; Fenton氧化 ; 酸性红B(ARB)
  • 英文关键词:zero-valent iron;;calcium alginate;;reduction;;Fenton oxidation;;acid red B(ARB)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:天津工业大学环境与化学工程学院;天津工业大学省部共建分离膜与膜过程国家重点实验室;天津工业大学天津市水质安全评价与保障技术工程中心;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51678409);; 天津市高等学校创新团队培养计划项目(TD13-5042)
  • 语种:中文;
  • 页:HJKZ201902024
  • 页数:9
  • CN:02
  • ISSN:11-1895/X
  • 分类号:198-206
摘要
以海藻酸钠为固定基质制备了Fe~0/海藻酸钙微球,探讨基于Fe~0/海藻酸钙微球对染料还原-Fenton氧化协同降解转化的特性及机制.通过FT-IR、SEM、BET、XPS等方法对材料进行了表征,考察了不同还原氧化体系、Fe~0/海藻酸钙微球投加量、溶液p H等因素对酸性红B(ARB)降解效果的影响,以及Fe~0/海藻酸钙微球还原-氧化过程中Fe~0的稳定性和海藻酸钙微球重复催化性能.结果表明,Fe~0/海藻酸钙微球的多级孔道结构对染料有一定的吸附作用.在Fe~0/海藻酸钙微球还原染料阶段中,Fe~0投加量为0. 24 g·L-1,溶液初始p H为2. 96时,180 min后ARB的色度去除率可达到96. 8%.在后续的Fenton氧化阶段,加入10. 75 mmol·L-1H2O2后,ARB色度去除率达到99%,矿化程度提高至64. 7%.与Fe~0/海藻酸钙微球还原体系和Fe3+/海藻酸钙微球Fenton氧化体系相比,Fe~0/海藻酸钙微球还原-Fenton氧化协同体系能够实现ARB的有效脱色和矿化.由于海藻酸钙中羧基对Fe2+/Fe3+的配位作用,Fe离子从微球中转移到溶液中的量为微球中总铁量的3. 9%左右.由于Fe离子能够较好地固定在海藻酸钙微球中,在p H较高条件下,减少了Fe氢氧化物的生成,Fenton反应能够在较宽p H范围内进行,含有Fe2+/Fe3+的海藻酸钙微球表现出较好的重复催化氧化性能.因此,Fe~0/海藻酸钙微球还原-Fenton氧化协同技术为染料废水的处理提供了一种较好的解决方案.
        The zero-valent iron( ZVI) immobilized in an alginate microsphere was prepared by using sodium alginate as a support material. The characteristics of the Fe~0/alginate microsphere was characterized by FT-IR,SEM,BET,and XPS. The SEM and BET analyses showed that the Fe~0/alginate microsphere had a multilevel porous structure and could adsorb ARB. Combined with Fe~0 reduction and Fe3 +/Fe2 +catalytic oxidation,the mineralization of ARB could be effectively realized. The ARB in the solution was discolored rapidly by the reduction of Fe~0/alginate microsphere and then oxidized efficiently by the subsequent Fenton reaction. The discoloration rate of ARB in the reduction stage was 96. 8%,with an Fe~0/alginate microsphere dosage of 0. 24 g·L-1 and p H of 2. 96 after reaction time of 180 min. ARB was reduced to organics of lower molecular weight due to the degradation of azo groups by Fe~0. In the subsequent Fenton oxidation stage,the mineralization degree of ARB increased to 64. 7% after the addition of 10. 75 mmol·L-1 H2 O2. The influence of the Fe~0/alginate microsphere dosage,p H,reusability of the Fe~0/alginate microsphere,and the stability of iron ions in the alginate microsphere were investigated. Due to the coordination of Fe3 +/Fe2 +ions with —COO-— in the alginate,the iron ion in the solution was 3. 9% of the total iron content in the microsphere. Iron ions could be well immobilized in calcium alginate microspheres,so the iron hydroxides were generated in lower amounts. The Fenton reaction can be conducted in a wide range of p H.The Fe2 +/Fe3 +immobilized in the alginate microsphere demonstrated good catalytic performance after it was reused four times.Therefore,the synergy of reduction and Fenton oxidation by the Fe~0/alginate microsphere was a better strategy for dye degradation.
引文
[1] Le T X H,van Nguyen T,Yacouba Z A,et al. Toxicity removal assessments related to degradation pathways of azo dyes:toward an optimization of Electro-Fenton treatment[J]. Chemosphere,2016,161:308-318.
    [2] Azizi A,Alavi Moghaddam M R,Maknoon R,et al. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation:bio-decolorization kinetics study[J]. Journal of Hazardous Materials,2015,299:343-350.
    [3] Yeruva D K,Sravan J S,Butti S K,et al. Spatial variation of electrode position in bioelectrochemical treatment system:design consideration for azo dye remediation[J]. Bioresource Technology,2018,256:374-383.
    [4] Li X H,Jin X D,Zhao N N,et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J]. Bioresource Technology,2017,228:322-329.
    [5]舒小铭,徐灿灿,文晓刚,等.铁刨花-Fenton-絮凝工艺对染料生产废水中AOX、色度和TOC的去除效果研究[J].环境科学,2016,37(7):2618-2624.Shu X M,Xu C C,Wen X G,et al. Removal of AOX,chroma and TOC in chemical dyestuff wastewater with iron ScrapsFenton-Coagulation combined process[J]. Environmental Science,2016,37(7):2618-2624.
    [6] Punzi M,Anbalagan A,B9rner R A,et al. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation:evaluation of toxicity and microbial community structure[J]. Chemical Engineering Journal,2015,270:290-299.
    [7] Machado F M,Bergmann C P,Fernandes T H M,et al.Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon[J]. Journal of Hazardous Materials,2011,192(3):1122-1131.
    [8] Chidambaram T,Oren Y,Noel M. Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater[J]. Chemical Engineering Journal,2015,262:156-168.
    [9] Dias F F,Oliveira A A S,Arcanjo A P,et al. Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton[J]. Applied Catalysis B:Environmental,2016,186:136-142.
    [10] Epolito W J,Yang H,Bottomley L A,et al. Kinetics of zerovalent iron reductive transformation of the anthraquinone dye Reactive Blue 4[J]. Journal of Hazardous Materials,2008,160(2):594-600.
    [11] Espinoza C,Romero J,Villegas L,et al. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a labpilot plant[J]. Journal of Hazardous Materials,2016,319:24-33.
    [12] Thiam A, Sirés I, Centellas F, et al. Decolorization and mineralization of Allura Red AC azo dye by solar photoelectroFenton:identification of intermediates[J]. Chemosphere,2015,136:1-8.
    [13] Ribeiro K,de Andrade T M,Fujiwara S T. Preparation and application of cellulose acetate/Fe films in the degradation of Reactive Black 5 dye through photo-Fenton reaction[J].Environmental Technology,2016,37(13):1664-1675.
    [14] Segura Y,Martínez F,Melero J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B:Environmental,2013,136-137:64-69.
    [15] Yin X C,Liu W,Ni J R. Removal of coexisting Cr(Ⅵ)and 4-chlorophenol through reduction and Fenton reaction in a single system[J]. Chemical Engineering Journal,2014,248:89-97.
    [16] Kuang Y, Du J H, Zhou R B, et al. Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu(II)and monochlorobenzene[J]. Journal of Colloid and Interface Science,2015,447:85-91.
    [17] Zhang H,Deng R,Wang H Y,et al. Reduction of bromate from water by zero-valent iron immobilized on functional polypropylene fiber[J]. Chemical Engineering Journal,2016,292:190-198.
    [18] Zhu H J,Jia Y F,Wu X,et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J].Journal of Hazardous Materials,2009,172(2-3):1591-1596.
    [19] Shu H Y,Chang M C,Chen C C,et al. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113azo dye solution[J]. Journal of Hazardous Materials,2010,184(1-3):499-505.
    [20] Li B,Dong Y C,Li M,et al. Comparative study of different Fe(Ⅲ)-carboxylic fiber complexes as novel heterogeneous Fenton catalysts for dye degradation[J]. Journal of Materials Science,2014,49(22):7639-7647.
    [21] Li B,Dong Y C,Zou C,et al. Iron(Ⅲ)-alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye[J]. Industrial&Engineering Chemistry Research,2014,53(11):4199-4206.
    [22] Huang J F,Li Y T,Wu J H,et al. Floatable,macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(Ⅵ)spill treatment[J]. Carbohydrate Polymers,2016,146:115-122.
    [23] Kim H, Hong H J, Jung J, et al. Degradation of trichloroethylene(TCE)by nanoscale zero-valent iron(nZVI)immobilized in alginate bead[J]. Journal of Hazardous Materials,2010,176(1-3):1038-1043.
    [24] Sriamornsak P,Thirawong N,Cheewatanakornkool K,et al.Cryo-scanning electron microscopy(cryo-SEM)as a tool for studying the ultrastructure during bead formation by ionotropic gelation of calcium pectinate[J]. International Journal of Pharmaceutics,2008,352(1-2):115-122.
    [25] Yamashita T,Hayes P. Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials[J]. Applied Surface Science,2008,254(8):2441-2449.
    [26]孙德帅,刘亚丽,张晓东,等.铁有机骨架材料的快速合成及对阴离子染料的吸附性能[J].环境科学,2016,37(3):1016-1022.
    [27] Fan J,Guo Y H,Wang J J,et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials,2009,166(2-3):904-910.
    [28]周庆,陈杏娟,郭俊,等.零价铁对脱色希瓦氏菌S12偶氮还原的促进作用[J].环境科学,2013,34(7):2855-2861.Zhou Q,Chen X J,Guo J,et al. Zero-valent iron-enhanced azoreduction by the Shewanella decolorationis S12[J].Environmental Science,2013,34(7):2855-2861.
    [29] Kim S A,Kamala-Kannan S,Lee K J,et al. Removal of Pb(II)from aqueous solution by a zeolite-nanoscale zero-valent iron composite[J]. Chemical Engineering Journal,2013,217:54-60.
    [30]曾淦宁,武晓,郑林,等.负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr(Ⅵ)的研究[J].环境科学,2015,36(2):530-536.Zeng G N,Wu X,Zheng L,et al. Preparation of nano zerovalent iron/Sargassum horneri based activated carbon for removal of Cr﹙Ⅵ﹚from aqueous solution[J]. Environmental Science,2015,36(2):530-536.