Fe_2O_3改性蒙脱土对邻苯二酚的高效去除机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Efficient removal mechanism of catechol by Fe_2O_3 modified montmorillonite
  • 作者:王朋 ; 常亚洲 ; 石林 ; 郎笛 ; 张迪
  • 英文作者:WANG Peng;CHANG Yazhou;SHI Lin;LANG Di;ZHANG Di;Faculty of Environmental Science and Engineering, Kunming University of Science & Technology;
  • 关键词:蒙脱土改性 ; 邻苯二酚 ; 去除动力学 ; 吸附 ; 降解
  • 英文关键词:montmorillonite modified;;catechol;;removal kinetics;;adsorption;;degradation
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:昆明理工大学环境科学与工程学院;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:国家自然科学基金(41663014,41303093)
  • 语种:中文;
  • 页:HGJZ201902050
  • 页数:7
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:418-424
摘要
蒙脱土及其改性后的吸附材料在环境领域广泛应用。本文研究了蒙脱土(MT-Na)及其Fe_2O_3改性后(MT-Fe_2O_3)用于去除不同p H条件溶液中的邻苯二酚。与MT-Na相比,MT-Fe_2O_3对邻苯二酚表现出更快速和高效的去除效果。随着p H升高,MT-Na从溶液中除去邻苯二酚增加,而MT-Fe_2O_3表现出相反的现象。双室一级去除动力学模型拟合结果表明,MT-Na的快室去除邻苯二酚来自于吸附,慢室去除主要是来自于降解;MT-Fe_2O_3快室主要是吸附和最初的降解,随着降解中间产物在表面的生成,阻碍了邻苯二酚在颗粒上的吸附,减缓了降解速率,表现为慢室去除。Fe_2O_3诱导生成的·OH是MT-Fe_2O_3高效去除邻苯二酚的主要因素。区分黏土颗粒去除邻苯二酚过程中的吸附和降解的贡献,将有助于更加准确地评估黏土颗粒的环境功效和描述邻苯二酚的环境行为。
        Montmorillonite and its derivatives are widely used adsorbent in environmental field. In this study, montmorillonite(MT-Na) and Fe_2O_3 modified montmorillonite(MT-Fe_2O_3) were used to remove catechol at various pH. Higher efficacy and faster removal of catechol was detected for MT-Fe_2O_3 than MT-Na. Catechol removal from solution was higher with MT-Na with increasing p H, while MT-Fe_2O_3 showed a reverse trend. Removal kinetics results showed fast and slow compartment of catechol removalinvolving adsorption and subsequent degradation of the latter. For MT-Fe_2O_3, fast compartment wasattributed to adsorption and initial degradation. The retardation of catechol degradation rate manifested inthe slow compartment was attributed to the hindrance of the active reaction sites by intermediatedegradation products, Fe_2O_3 mediated generation of ·OH is central regarding removal of catechol using MT-Fe_2O_3. Efficient degradation of organic contaminants by montmorillonite underscores the importance of clay particles as capable adsorbent. This study will provide more precise assessment of the distinct contribution of clay particles in adsorption and degradation of catechol in environmental media.
引文
[1] SCHWEIGERT N,ZEHNDER A J,EGGEN R I. Chemical propertiesof catechols and their molecular modes of toxic action in cells, frommicroorganisms to mammals[J]. Environmental Microbiology, 2001, 3:81-91.
    [2] TSUTSUI T,HAYASHI N,MAIZUMI H,et al. Benzene-, catechol-,hydroquinone-and phenol-induced cell transformation, gene mutations,chromosome aberrations, aneuploidy, sister chromatid exchanges andunscheduled DNA synthesis in Syrian hamster embryo cells[J].Mutation Research/Fundamental and Molecular Mechanisms ofMutagenesis, 1997, 373:113-123.
    [3] CAVALIERI E L,LI K M,BALU N,et al. Catechol ortho-quinones:the electrophilic compounds that form depurinating DNA adducts andcould initiate cancer and other diseases[J]. Carcinogenesis, 2002, 23:1071-1077.
    [4] KEITH L H. Environmental sampling and analysis:a practical guide.[M]. Chelsea MI, USA:Lewis Publishers, 1991.
    [5] CRINI G. Non-conventional low-cost adsorbents for dye removal:areview[J]. Bioresource Technology, 2006, 97:1061-1085.
    [6] JAIN A K,GUPTA V K,JAIN S,et al. Removal of chlorophenols usingindustrial wastes[J]. Environmental Science&Technology, 2004, 38:1195-1200.
    [7] KUMAR A,KUMAR S,KUMAR S. Adsorption of resorcinol andcatechol on granular activated carbon:equilibrium and kinetics[J].Carbon, 2003, 41(15):3015-3025.
    [8] LIU Y,GAO M,GU Z,et al. Comparison between the removal ofphenol and catechol by modified montmorillonite with two novelhydroxyl-containing Gemini surfactants[J]. Journal of HazardousMaterials, 2014, 267:71-80.
    [9] PENG A,GAO J,CHEN Z,et al. Interactions of gaseous2-chlorophenol with Fe3+-saturated montmorillonite and their toxicityto human lung cells[J]. Environmental Science&Technology, 2018, 52(9):5208-5217.
    [10] PENTRKOVA L,SU K,PENTRA K M,et al. A review of microbialredox interactions with structural Fe in clay minerals[J]. Clay Minerals,2013, 48:543-560.
    [11] KEILUWEIT M,KLEBER M. Molecular-level interactions in soilsand sediments:the role of aromaticπsystems[J]. EnvironmentalScience&Technology, 2009, 43:3421-3429.
    [12] PIGNATELLO J J, XING B. Mechanisms of slow sorption of organicchemicals to natural particles[J]. Environmental Science&Technology, 1995, 30:1-11.
    [13] ZHU R,CHEN Q,ZHOU Q,et al. Adsorbents based onmontmorillonite for contaminant removal from water:a review[J].Applied Clay Science, 2016, 123:239-258.
    [14] GORSKI C A,AESCHBACHER M,SOLTERMANN D,et al. Redoxproperties of structural Fe in clay minerals. 1. Electrochemicalquantification of electron-donating and accepting capacities ofsmectites[J]. Environmental Science&Technology, 2012, 46:9360-9368.
    [15] SAWHNEY B,KOZLOSKI R,ISAACSON P,et al. Polymerization of2,6-dimethylphenol on smectite surfaces[J]. Clays Clay Miner, 1984,32:108-114.
    [16] WU P,LIAO Z,ZHANG H,et al. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water[J]. EnvironmentInternational, 2001, 26:401-407.
    [17] KOSTKA J E,WU J,NEALSON K H,et al. The impact of structuralFe(Ⅲ)reduction by bacteria on the surface chemistry of smectite clayminerals[J]. Geochimica et Cosmochimica Acta, 1999, 63:3705-3713.
    [18] BORAH M,GANGULI J N,DUTTA D K Intersalation reactions oftrisdiimine metal complexes with montmorillonite clay:a new approach[J]. Journal of Colloid and Interface Science, 2001, 233:171-179.
    [19] DEIANA S,GESSA C,MARCHETTI M,et al. Phenolic acid redoxproperties:pH influence on iron(Ⅲ)reduction by caffeic acid[J]. SoilScience Society of America Journal, 1995, 59:1301-1307.
    [20] SPOSITO G. The surface chemistry of soils[M]. Britain:OxfordUniversity Press, 1984.
    [21] POLUBESOVA T,ELDAD S,CHEFETZ B Adsorption and oxidativetransformation of phenolic acids by Fe()-montmorillonite[J].Environmental Science&Technology, 2010, 44:4203-4209.
    [22] GRAF E. Antioxidant potential of ferulic acid[J]. Free Radical Biologyand Medicine, 1992, 13:435-448.
    [23] WANG T S,LI S W,FERNG Y L Catalytic polymerization of phenoliccompounds by clay minerals[J]. Soil Science, 1978, 126:15-21.
    [24] WANG S. A comparative study of Fenton and Fenton-like reactionkinetics in decolourisation of wastewater[J]. Dyes and Pigments, 2008,76:714-720.
    [25] GRANADOS-OLIVEROS G, MEZ-VIDALES V, NIETO-CAMACHOA,et al. Photoproduction of H2O2and hydroxyl radicals catalysed bynatural and super acid-modified montmorillonite and its oxidative rolein the peroxidation of lipids[J]. RSC Advances, 2013, 3:937-944.
    [26] SONG W,CHENG M,MA J,et al. Decomposition of hydrogenperoxide driven by photochemical cycling of iron species in clay[J].Environmental Science&Technology, 2006, 40:4782-4787.Ⅲ--