挥发性有机物大气氧化反应与二次有机气溶胶形成机制研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Atmospheric oxidation of low volatility organic compounds and the formation mechanism of corresponding secondary organic aerosol
  • 作者:周闪闪 ; 李彪 ; 韦娜娜 ; 胡长进 ; 王振亚 ; 张为俊
  • 英文作者:ZHOU Shanshan;LI Biao;WEI Nana;HU Changjin;WANG Zhenya;ZHANG Weijun;Laboratory of Atmospheric Physico-Chemistry,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;Graduate School,University of Science and Technology of China;School of Environmental Science and Optoelectronic Technology,University of Science and Technology of China;
  • 关键词:挥发性有机物 ; 二次有机气溶胶 ; 氧化机制 ; 实验室模拟研究 ; 外场观测 ; 模式研究
  • 英文关键词:low-volatility organic compounds;;secondary organic aerosol;;oxidation mechanism;;simulating experiments;;field observation;;modeling
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:中国科学院安徽光学精密机械研究所大气物理化学实验室;中国科学技术大学研究生院;中国科学技术大学环境科学与光电技术学院;
  • 出版日期:2018-12-18 14:53
  • 出版单位:环境化学
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(41575126,U1532143);; 国家重点研发计划(2017YFC0209506,2017YFC0209401)资助~~
  • 语种:中文;
  • 页:HJHX201902003
  • 页数:11
  • CN:02
  • ISSN:11-1844/X
  • 分类号:13-23
摘要
二次有机气溶胶(SOA)是大气颗粒物的重要组成部分,准确评估其在大气环境中的产生,是全面认识气溶胶的环境、气候与健康效应的关键所在.随着研究的进展,人们发现曾经被忽略的低挥发性有机物(LVOCs)的大气氧化反应,可能是二次有机气溶胶的重要来源,因此逐渐引起人们的广泛关注.基于国内外近年来相关研究的进展,本文对低挥发性有机物的大气氧化反应及SOA的形成研究现状进行了总结.从LVOCs在大气中的基本氧化机制出发,较为详尽地展示了迄今为止关于LVOCs的实验室定性与定量研究、场地观测研究以及理论模式研究.鉴于LVOCs研究面临的困难,如LVOCs的难以探测性、其在大气中反应的复杂性和环境的多变性、以及理论模拟中多参数化等,本文提出了未来深入研究面临的挑战和可能的研究方向,有望为将来相关研究工作的开展提供借鉴,同时也将为国内二次有机气溶胶污染的防控减排提供科学参考.
        Secondary organic aerosols( SOA) contribute significantly to fine aerosol particles in atmosphere. Therefore, accurate evaluation of their sources and formation is pivotal to fully understand their impacts on the environment,climate and human health. With the progress of the research,it has been found that the oxidation of primary low-volatility organic compounds( LVOCs),which was assumed originally to non-reactive,is an important contributor to the formation of SOA and is turning into a research focus. In this review,we outline the latest development on the oxidation of LVOCs and the corresponding formation of SOA,which consists of( 1) the main oxidation mechanism,( 2) the latest experimental processes,( 3) the typical field measurements,and( 4) the model studies. Due to the difficulties of their gas chromatograph detection,complexity of reactions,variability of atmosphere environment,uncertainty of modelling and so on,the major challenges ahead in laboratory,field and modeling studies of LVOCs oxidation are discussed. The discussion is believed to be helpful for future research directions,as well as for control strategy of pollution in China.
引文
[1] STOCKER T F,QIN D,PLATTNER G,et al. IPCC(intergovernmental panel on climate change):Climate Change 2013:The PhysicalScience Basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change[C].Cambridge Univ. Press,Cambridge,UK,2013.
    [2] POPE C A,DOCKERY D W. Health effects of fine particulate air pollution:Lines that connect[J]. Air Repair,2006,56(10):709-742.
    [3] FANG M,CHAN C K,YAO X. Managing air quality in a rapidly developing nation:China[J]. Atmospheric Environment,2009,43(1):79-86.
    [4] HUANG R J,ZHANG Y,BOZZETTI C,et al. High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222.
    [5] KANAKIDOU M,SEINFELD J H,PANDIS S N,et al. Organic aerosol and global climate modelling:A review[J]. AtmosphericChemistry&Physics Discussions,2004,4(5):1053-1123.
    [6] ZHANG Q,JIMENEZ J L,CANAGARATNA M R,et al. Ubiquity and dominance of oxygenated species in organic aerosols inanthropogenically-influenced Northern Hemisphere midlatitudes[J]. Geophysical Research Letters,2007,34(13):L13801,doi:10.1029/2007GL029979.
    [7] SCHAUER J J,ROGGE W F,HILDEMANN L M,et al. Source apportionment of airborne particulate matter using organic compounds astracers[J]. Atmospheric Environment,2007,41(22):241-259.
    [8] HALLQUIST M,WENGER J C,BALTENSPERGER U,et al. The formation,properties and impact of secondary organic aerosol:Currentand emerging issues[J]. Atmospheric Chemistry&Physics,2009,9(1):5155-5236.
    [9] DOCHERTY K S,STONE E A,ULBRICH I M,et al. Apportionment of primary and secondary organic aerosols in southern Californiaduring the 2005 study of organic aerosols in riverside(SOAR-1)[J]. Environmental Science&Technology,2008,42(20):7655-7662.
    [10] GOLDSTEIN A H,GALBALLY I E. Known and unexplored organic constituents in the earth's atmosphere[J].Environmental Science&Technology,2007,41(5):1514-1521.
    [11] MURPHY D M,CZICZO D J,FROYD K D,et al. Single-particle mass spectrometry of tropospheric aerosol particles[J]. Journal ofGeophysical Research Atmospheres,2006,111:D23S23,doi:10.1029/2006JD007340.
    [12] ROBINSON A L,DONAHUE N M,SHRIVASTAVA M K,et al. Rethinking organic aerosols:Semivolatile emissions and photochemicalaging[J]. Science,2007,315(5816):1259-1262.
    [13] GRIESHOP A P,DONAHUE N M,ROBINSON A L. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires2:Analysis of aerosol mass spectrometer data[J].Atmospheric Chemistry&Physics Discussions,2009,9:2227-2240.
    [14] GRIESHOP A P,LOGUE J M,DONAHUE N M,et al. Laboratory investigation of photochemical oxidation of organic aerosol from woodfires 1:Measurement and simulation of organic aerosol evolution[J]. Atmospheric Chemistry&Physics,2009,9:1263-1277.
    [15] DE GOUW J A,MIDDLEBROOK A M,WARNEKE C,et al. Budget of organic carbon in a polluted atmosphere:Results from the NewEngland Air Quality Study in 2002[J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D16):D16305, doi:10.1029/2004JD005623.
    [16] HEALD C L,JACOB D J,PARK R J,et al. A large organic aerosol source in the free troposphere missing from current models[J].Geophysical Research Letters,2005,32(18):109-127.
    [17] VOLKAMER R,JIMENEZ J L,MARTINI F S,et al. Secondary organic aerosol formation from anthropogenic air pollution:Rapid andhigher than expected[J]. Geophysical Research Letters,2006,33(17):254-269.
    [18] DONAHUE N M,ROBINSON A L,STANIER C O,et al. Coupled partitioning,dilution,and chemical aging of semivolatile organics.[J].Environmental Science&Technology,2006,40(8):2635-2643.
    [19] LIPSKY E M,ROBINSON A L. Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and woodsmoke[J]. Environmental Science&Technology,2006,40(1):155-162.
    [20] HUFFMAN J A,DOCHERTY K S,AIKEN A C,et al. Chemically-resolved aerosol volatility measurements from two megacity field studies[J]. Atmospheric Chemistry&Physics,2009,9(18):7161-7182.
    [21] HUFFMAN J A,DOCHERTY K S,MOHR C,et al. Chemically-resolved volatility measurements of organic aerosol from different sources[J]. Environmental Science&Technology,2009,43(14):5351-5357.
    [22] SAGE A M,WEITKAMP E A,ROBINSON A L,et al. Evolving mass spectra of the oxidized component of organic aerosol:Results fromaerosol mass spectrometer analyses of aged diesel emissions[J]. Atmospheric Chemistry&Physics,2008,8(5):1139-2008.
    [23] JIMENEZ J L,CANAGARATNA M R,DONAHUE N M,et al. Evolution of organic aerosols in the atmosphere:A new frameworkconnecting measurements to models[J]. Science,2009,326:1525-1535.
    [24] FRASER M P,CASS G R,SIMONEIT B R T,et al. Air quality model evaluation data for organics. 4. C 2-C 36 nonaromatic hydrocarbons[J]. Environmental Science&Technology,1997,31(8):2356-2367.
    [25] CHAN A W H,KAUTZMAN K E,CHHABRA P S,et al. Secondary organic aerosol formation from photooxidation of naphthalene andalkylnaphthalenes:implications for oxidation of intermediate volatility organic compounds(IVOCs)[J]. Atmospheric Chemistry&Physics,2009,9(9):3049-3060.
    [26] PRESTO A A,MIRACOLO M A,KROLL J H,et al. Intermediate-volatility organic compounds:A potential source of ambient oxidizedorganic aerosol[J]. Environmental Science&Technology,2009,43(13):4744-4749.
    [27] RIVA M,HEALY R M,FLAUD P M,et al. Gas-and particle-phase products from the photooxidation of acenaphthene and acenaphthyleneby OH radicals[J]. Atmospheric Environment,2017,151:34-44.
    [28]王振亚,郝立庆,张为俊.二次有机气溶胶形成的化学过程[J].化学进展,2005,17(4):732-739.WANG Z Y,HAO L Q,ZHANG W J. Chemical processes on the formation of secondary organic aerosols[J].Progress in Chemitry,2005,2005,17(4):732-739(in Chinese).
    [29]王振亚,郝立庆,张为俊.二次有机气溶胶的气体/粒子分配理论[J].化学进展,2007,19(1):93-100.WANG Z Y,HAO L Q,ZHANG W J.Gas Particle partitioning theory for secondary organic aerosol[J].Progress in Chemistry,2007,19(1):93-100(in Chinese).
    [30]谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展,2010,22(4):727-733.XIE S D,TIAN X X. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J].Progress in Chemitry,2010,22(4):727-733(in Chinese).
    [31]李莹莹,李想,陈建民.植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究[J].环境科学,2011,32(12):3588-3592.LI Y Y,LI X,CHENG J M. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition[J]. EnvironmentalScience,2011,32(12):3588-3592(in Chinese).
    [32]陈文泰,邵敏,袁斌,等.大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J].环境科学学报,2013,33(1):163-172.CHENG W T,SHAO M,YUAN B,et al. Parameterization of contribution to secondary organic aerosol(SOA)formation from ambientvolatile organic compounds(VOCs)[J]. Acta Scientiae Circumstantiae,2013,33(1):163-172(in Chinese).
    [33]李时政,马嫣,郑军,等.α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性[J].环境化学,2015,34(9):1633-1641.LI S Z,MA Y,ZHENG J,et al. Physicochemical properties and cloud nucleating abilities of secondary organic aerosol fromα-pineneozonolysis[J]. Environmental Chemistry,2015,34(9):1633-1641(in Chinese).
    [34]陈卓,刘峻峰,陶玮,等.中国地区二次有机气溶胶的时空分布特征和来源分析[J].环境科学,2016,37(8):2815-2822.CHENG Z,LIU J F,TAO W,et al. Spatiotemporal distribution and source attribution of SOA in China[J]. Environmental Science,2016,37(8):2815-2822(in Chinese).
    [35]葛跃,王明新,孙向武,等.长三角地区秋冬季大气PM2.5含量空间变异特征[J].环境化学,2016,35(8):1698-1706.GE Y,WANG M X,SUN X W,et al. Spatial variations of atmospheric PM2.5concentration in autumn and winter in Yangtze River Delta[J]. Environmental Chemistry,2016,35(8):1698-1706(in Chinese).
    [36] XU S,LIU W,TAO S. Emission of polycyclic aromatic hydrocarbons in China[J]. Environmental Science&Technology,2006,40(3):702-708.
    [37] YUAN B,HU W W,SHAO M,et al. VOC emissions,evolutions and contributions to SOA formation at a receptor site in Eastern China[J]. Atmospheric Chemistry&Physics,2013,13(17):8815-8832.
    [38] ATKINSON R,AREY J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:A review[J]. AtmosphericEnvironment,2003,37(1):197-219.
    [39] ATKINSON R,ASCHMANN S M. Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromaticcompounds with OH and NO3radicals,N2O5and O3at 296±2 K[J]. International Journal of Chemical Kinetics,1988,20(20):513-539.
    [40] ATKINSON R,AREY J. Mechanisms of the gas-phase reactions of aromatic Hydrocarbons and PAHs with OH and NO3Radicals[J].Polycyclic Aromatic Compounds,2007,38(39):15-40.
    [41] RIVA M,HEALY R M,FLAUD P M,et al. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene,acenaphthene,andacenaphthylene[J]. Journal of Physical Chemistry A,2014,118(20):3535-3540.
    [42] PALM B B,CAMPUZANO-JOST P,DAY D A,et al. Secondary organic aerosol formation from in situ OH,O3,and NO3oxidation ofambient forest air in an oxidation flow reactor[J]. Atmospheric Chemistry&Physics,2017,17(8):5331-5354.
    [43] PALM B B,CAMPUZANOJOST P,ORTEGA A M,et al. In situ secondary organic aerosol formation from ambient pine forest air using anoxidation flow reactor[J]. Atmospheric Chemistry&Physics,2016,15(21):30409-30471.
    [44] KROLL J H,SEINFELD J H. Chemistry of secondary organic aerosol:Formation and evolution of low-volatility organics in the atmosphere[J]. Atmospheric Environment,2008,42(16):3593-3624.
    [45] HENZE D K,SEINFELD J H,NG N L,et al. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons:High-vs low-yield pathways[J]. Atmospheric Chemistry&Physics Discussions,2008,8(9):2405-2420.
    [46] PYE H O T,SEINFELD J H. A global perspective on aerosol from low-volatility organic compounds[J]. Atmospheric Chemistry&Physics,2010,10(9):4377-4401.
    [47] ORLANDO J J,TYNDALL G S. Laboratory studies of organic peroxy radical chemistry:An overview with emphasis on recent issues ofatmospheric significance[J]. Chemical Society Reviews,2012,41(19):6294-6317.
    [48] CHEN C L,KACARAB M,TANG P,et al. SOA formation from naphthalene,1-methylnaphthalene,and 2-methylnaphthalenephotooxidation[J]. Atmospheric Environment,2016,131:424-433.
    [49] AREY J,ASCHMANN S M,KWOK E S C,et al. Alkyl nitrate,hydroxyalkyl nitrate,and hydroxycarbonyl formation from the NOx-airphotooxidations of C 5-C 8 n alkanes[J]. Journal of Physical Chemistry A,2001,105(6):1020-1027.
    [50] CHAN A W H,CHAN M N,SURRATT J D,et al. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosolformation[M].Atmospheric Chemistry&Physics. 2010:7169-7188.
    [51] ZIEMANN P J. Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3with cyclohexene and homologous compounds[J]. Journal of Physical Chemistry A,2002,106(17):4390-4402.
    [52] WANG L,ATKINSON R,AREY J. Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1-and C2-alkylnaphthalenes[J]. Environmental Science&Technology,2007,41(8):2803-2810.
    [53] KAUTZMAN K E,SURRATT J D,CHAN M N,et al. Chemical composition of gas-and aerosol-phase products from the photooxidation ofnaphthalene[J]. Journal of Physical Chemistry A,2010,114(2):913-934.
    [54] RIVA M,HEALY R M,FLAUD P M,et al. Gas-and particle-phase products from the chlorine-initiated oxidation of polycyclic aromatichydrocarbons(PAHs)[J]. Journal of Physical Chemistry A,2015,119(45):11170-11181.
    [55] RIVA M,HEALY R M,TOMAZ S,et al. Gas and particulate phase products from the ozonolysis of acenaphthylene[J]. AtmosphericEnvironment,2016,142:104-113.
    [56] REISEN F,AREY J. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene[J]. Environmental Science&Technology,2002,36(20):4302-4311.
    [57] PHOUSONGPHOUANG P T,AREY J. Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the OH radica[J].Environmental Science&Technology,2002,36(9):1947-1952.
    [58] PHOUSONGPHOUANG P T,AREY J. Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the nitrate radical[J]. Environmental Science&Technology,2003,37(2):308-313.
    [59] ZHOU S,WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthene with hydroxyl radicals,nitrate radicals and ozone[J].Atmospheric Environment,2013a,72:97-104.
    [60] ZHOU S,WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthylene with hydroxyl radicals,nitrate radicals andozone[J]. Atmospheric Environment,2013b,75:103-112.
    [61] KLEINDIENST T E,JAOUI M,LEWANDOWSKI M,et al. The formation of SOA and chemical tracer compounds from the photooxidationof naphthalene and its methyl analogs in the presence and absence of nitrogen oxides[J]. Atmospheric Chemistry&Physics Discussions,2012,12(5):8711-8726.
    [62] SHAKYA K M,GRIFFIN R J. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons[J]. EnvironmentalScience&Technology,2010,44(21):8134-8139.
    [63] TKACIK D S,PRESTO A A,DONAHUE N M,et al. Secondary organic aerosol formation from intermediate-volatility organic compounds:Cyclic,linear,and branched alkanes[J]. Environmental Science&Technology,2012,46(16):8773-8781.
    [64] PRESTO A A,MIRACOLO M A,DONAHUE N M,et al. Secondary organic aerosol formation from high-NOx photo-oxidation of lowvolatility precursors:n-alkanes[J].Environmental Science&Technology,2010,44(6):2029-2034.
    [65] PANKOW J F. An absorption-model of gas–particle partitioning of organic compounds in the atmosphere[J]. Atmospheric Environment,1994,28(2):185-188.
    [66] PANKOW J F. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol[J]. AtmosphericEnvironment,1994,28(2):189-193.
    [67] ODUM J R,HOFFMANN T,BOWMAN F,et al. Gas/particle partitioning and secondary organic aerosol yields[J]. Environmental Science&Technology,1996,30(8):2580-2585.
    [68] SCHAUER J J,KLEEMAN M J,CASS G R,et al. Measurement of emissions from air pollution sources. 2. C1 through C30 organiccompounds from medium duty diesel trucks[J].Environmental Science Technology,1999,33(10):1578-1587.
    [69] SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds fromgasoline-powered motor vehicles[J].Environmental Science Technology,2002,36(6):1169-1180.
    [70] RAVINDRA K,SOKHI R,GRIEKEN R V. Atmospheric polycyclic aromatic hydrocarbons:Source attribution,emission factors andregulation[J]. Atmospheric Environment,2008,42(13):2895-2921.
    [71] PACIGA A,KARNEZI E,KOSTENIDOU E,et al. Volatility of organic aerosol and its components in the megacity of Paris[J].Atmospheric Chemistry&Physics,2016,16(4):2013-2023.
    [72] LIU H,MAN H Y,CUI H Y,et al. An updated emission inventory of vehicular VOCs and IVOCs in China[J].Atmospheric Chemistry&Physics,2017,17(20):12709-12724.
    [73] LOUVARIS E E,FLOROU K,KARNEZI E,et al. Volatility of source apportioned wintertime organic aerosol in the city of Athens[J].Atmospheric Environment,2017,158:138-147.
    [74] HAYES P L,CARLTON A G,BAKER K R,et al. Modeling the formation and aging of secondary organic aerosols in Los Angeles duringCalNex 2010[J].Atmospheric Chemistry&Physics,2015,15(10):5773-5801.
    [75] ORTEGA A M,HAYES P L,PENG Z,et al. Real-time measurements of secondary organic aerosol formation and aging from ambient air inan oxidation flow reactor in the Los Angeles area[J].Atmospheric Chemistry&Physics,2016,16(11):7411-7433.
    [76] BAHREINI R,MIDDLEBROOK A M,GOUW J A D,et al. Gasoline emissions dominate over diesel in formation of secondary organicaerosol mass[J].Geophysical Research Letters,2012,39:L06805,doi:10.1029/2011GL050718,2012.
    [77] RYERSON T B,ANDREWS A E,ANGEVINE W M,et al. The 2010 California research at the nexus of air quality and climate change(CalNex)field study[J].Journal of Geophysical Research Atmospheres,2013,118(11):5830-5866.
    [78] MA P K,ZHAO Y,ROBINSON A L,et al. Evaluating the impact of new observational constraints on P-S/IVOC emissions,multi-generation oxidation,and chamber wall losses on SOA modeling for Los Angeles,CA[J]. Atmospheric Chemistry&Physics,2017,17(15):9237-9259.
    [79] DZEPINA K,VOLKAMER R M,MADRONICH S,et al. Evaluation of recently-proposed secondary organic aerosol models for a case studyin Mexico City[J].Atmospheric Chemistry&Physics,2009,9(15):5681-5709.
    [80] GAYDOS T M,PINDER R W,KOO P B,et al. Development and application of a three-dimensional aerosol chemical transport model,PMCAMx[J]. Atmospheric Environment,2007,41(12):2594-2611.
    [81] SHRIVASTAVA M K,LANE T E,DONAHUE N M,et al. Effects of gas particle partitioning and aging of primary emissions on urban andregional organic aerosol concentrations[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D18), doi:10.1029/2007jd009735.
    [82] HODZIC A,JIMENEZ J L,MADRONICH S,et al. Modeling organic aerosols in a megacity:Potential contribution of semi-volatile andintermediate volatility primary organic compounds to secondary organic aerosol formation[J].Atmospheric Chemistry&Physics,2010,10(1):5491-5514.
    [83] MURPHY B N,PANDIS S N. Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemicaltransport model[J].Environmental Science&Technology,2009,43(13):4722-4728.
    [84] ZHANG X,CAPPA C D,JATHAR S H,et al. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(16):5802-5807.
    [85] KRECHMER J E,PAGONIS D,ZIEMANN P J,et al. Quantification of gas-wall partitioning in teflon environmental chambers using rapidbursts of low-volatility oxidized species generated in situ[J]. Environmental Science&Technology,2016,50(11):5757-5765.
    [86] WORTON D R,ISAACMAN G,GENTNER D R,et al. Lubricating oil dominates primary organic aerosol emissions from motor vehicles[J]. Environmental Science&Technology,2014,48(7):3698-3706.
    [87] ZHAO Y,HENNIGAN C J,MAY A A,et al. Intermediate-volatility organic compounds:A large source of secondary organic aerosol[J].Environmental Science&Technology,2014,48(23):13743-13750.
    [88] TSIMPIDI A P,KARYDIS V A,ZAVALA M,et al. Evaluation of the volatility basis-set approach for the simulation of organic aerosolformation in the Mexico City metropolitan area[J].Atmospheric Chemistry&Physics,2010,10(2):525-546.