冷却剂加锌对核电结构材料腐蚀行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Behavior of Nuclear Structural Materials in Zn-added Coolant
  • 作者:海正银 ; 辛长胜 ; 王辉
  • 英文作者:Hai Zhengyin;Xin Changsheng;Wang Hui;China Institute of Atomic Energy;
  • 关键词:加锌 ; 结构材料 ; 腐蚀 ; 高温电化学
  • 英文关键词:zinc addition;;structural materials;;corrosion;;high temperature electrochemical
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:中国原子能科学研究院;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:国家科技重大专项(2011ZX06004-017)
  • 语种:中文;
  • 页:COSE201902048
  • 页数:5
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:331-335
摘要
选用与压水堆(PWR)核电站一回路冷却剂接触面积最大的结构材料690合金和316LN锻造不锈钢为研究对象,在模拟PWR一回路水化学环境下,采用静态高压釜浸泡方法和高温电化学方法研究冷却剂中加锌对这2种结构材料腐蚀行为的影响。研究发现,冷却剂加锌能明显抑制材料的均匀腐蚀速率和腐蚀产物释放速率。高温水中,以醋酸锌形式加锌,锌离子浓度为(10~50)ng/g时,能有效抑制腐蚀速率和腐蚀产物释放速率,加锌50ng/g以上,加锌浓度对腐蚀速率和腐蚀产物释放速率的影响趋于稳定。
        316 LN and 690 Alloy, the structural materials with the largest contact area with the primary circuit coolant of the nuclear power plant, were selected as the research objects. Under the simulated pressurized water reactor(PWR) primary circuit water chemical condition,we used a static autoclave immersion method and a high temperature electrochemical method to study the effect of zinc concentration on the corrosion behavior of these two structural materials. The results show that zinc addition can obviously inhibit the corrosion rate of materials and the corrosion product release rate. Compared with Zn-free conditions, when zinc concentration is 10~50 ng/g, the zinc addition can effectively reduce the corrosion rate and corrosion product release rate of 316 LN and 690 Alloy.
引文
[1]Ewelina Chajduk,Anna Bojanowska-Czajka.Progress in Nuclear Energy[J],2016,88:1
    [2]Akos Horvath,Elisabeth Rachlew.Ambio[J],2016,45(5):38
    [3]Liu Xiahe,Han Enhou,Wu Xinqiang.Corrosion Science[J],2014,78:200
    [4]Hai Zhengyin(海正银),Wang Hui(王辉),Xin Changsheng(辛长胜)et al.Journal of Chinese Society for Corrosion and Protection(中国腐蚀与防护学报)[J],2014,34(6):532
    [5]Jeon Soon-Hyeok,Lee Eun-Hee,Hur Do Haeng.Journal of Nuclear Materials[J],2017,485:113
    [6]Chen Junjie,Xiao Qian,Lu Zhanpeng et al.Journal of Nuclear Materials[J],2017,489:137
    [7]Han Guangdong,Lu Zhanpeng,Ru Xiangkun et al.Corrosion Science[J],2016,106:157
    [8]Lim Yun Soo,Kim Sung Woo,Hwang Seong Sik et al.Corrosion Science[J],2016,108:125
    [9]Stellwag B.Corrosion Science[J],1998,40(2-3):337
    [10]Hugh S C O,Alexandra Navrotsky.American Mineralogist[J],1983,68:181
    [11]Ning Jing,Zheng Yougui,Bruce Brown et al.Corrosion[J],2014,70(4):375
    [12]Grimes R W,Anderson A B,Heuer A H et al.Physical Inorganic Chemistry[J],1989,20(13):1
    [13]Miyajima K,Hirano H.Corrosion[C].Houston:NACEInternational,2001:13
    [14]Betova Iva,Bojinov M,Kinnunen P et al.Electrochim Acta[J],2009,54(3):1056
    [15]Perkins D.EPRI Pressurized Water Reactor Zinc Application Guidelines,EPRI Report,1013420[R].Palo Alto:EPRI,2006