自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications
  • 作者:周颖 ; 顾安琪
  • 英文作者:ZHOU Ying;GU Anqi;State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University;
  • 关键词:自复位剪力墙 ; 四水准抗震设防 ; 弹塑性时程分析 ; 基于位移抗震设计
  • 英文关键词:self-centering shear wall structure;;four-level seismic fortifications;;elasto-plastic time history analysis;;displacement-based seismic design
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:同济大学土木工程防灾国家重点实验室;
  • 出版日期:2018-12-17 17:02
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2016YFC0701101)
  • 语种:中文;
  • 页:JZJB201903012
  • 页数:9
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:122-130
摘要
与传统剪力墙结构体系相比,自复位剪力墙结构体系在地震作用下,会将材料非线性问题转为体系非线性问题,具有整体变形能力强、残余位移小的特点,因此,亟需针对自复位剪力墙结构,提出具有更高抗震设防要求的抗震设防目标以及相应的设计方法。基于GB 50011—2010《建筑抗震设计规范》中"小震不坏、中震可修、大震不倒"的三水准抗震设防目标,与2015年颁布的第五代《中国地震动参数区划图》相适应,提出了可恢复功能结构体系"小震及中震不坏,大震可更换、可修复,巨震不倒塌"抗震设防四水准目标。采用了基于位移的抗震设计方法进行自复位剪力墙结构设计。以一幢自复位剪力墙结构为例,给出四水准抗震设防目标下的基于位移设计方法算例,并对其进行弹塑性时程分析,验证了所提出的四水准抗震设防目标下基于位移抗震设计方法的有效性,该方法也适用于其他可恢复功能结构体系设计。
        Compared with traditional shear wall structures, self-centering shear wall structures transfer material nonlinearity into geometrical nonlinearity under seismic input,so they are capable of undergoing large global deformability and small residual drift.Therefore, seismic design with higher seismic fortification objectives and the corresponding seismic design method are needed for self-centering shear wall structures. In corresponding with the three-level seismic fortification objectives in Chinese seismic code "no damage under minor earthquake, repairable under moderate earthquake, and no collapse under major earthquake", a four-level seismic fortification objective was proposed as "no damage under minor and moderate earthquake, replaceable or repairable under major earthquake, and no collapse under mega earthquake" based on the seismic ground motion parameter zonation map of China. Since self-centering shear wall structures had large deformation demand, the displacement-based seismic design was applied for this kind of structures. A design example of self-centering shear wall structures was presented. Elasto-plastic time history analyses were executed, and the results validated the seismic design method. The proposed displacement-based seismic design considering four-level seismic fortifications can also be applied to other resilient structures.
引文
[1] WOOD S, WRIGHT J, MOEHLE J. The 1985 Chile earthquake: observations on earthquake-resistant construction in Vina del Mar[R]. Urbana: University of Illinois at Urbana-Champaign, 1987.
    [2] EGUCHI R T, GOLTZ J D, TAYLOR C E, et al. Direct economic losses in the Northridge Earthquake: a three-year post-event perspective[J]. Earthquake Spectra, 1998, 14: 245-264.
    [3] PAMPANIN S. Reality-check and renewed challenges in earthquake engineering: implementing low-damage structural systems-from theory to practice[C]//15th World Conference on Earthquake Engineering. Lisbon, Portugal: IAEE, 2012: 137-160.
    [4] NEES/E-Defense. Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering: PEER 2010/109[R]. Berkeley: University of California at Berkeley, 2010.
    [5] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10.(ZHOU Ying, LU Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011,32(9): 1-10. (in Chinese))
    [6] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念: 可恢复功能结构[J]. 同济大学学报(自然科学版),2011,39(7):941-948. (LU Xilin, CHEN Yun, MAO Yuanjun.New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011,39(7):941-948.(in Chinese))
    [7] 张爱林,张艳霞,刘学春. 震后可恢复功能的预应力钢结构体系研究展望[J]. 北京工业大学学报,2013, 39(4):507-515. (ZHANG Ailin, ZHANG Yanxia, LIU Xuechun. Research outlook of earthquake resilient prestressed steel structures[J]. Journal of Beijing University of Technology, 2013, 39(4):507-515.(in Chinese))
    [8] ENGLEKIRK R E. Design-construction of the Paramount: a 39-story precast prestressed concrete apartment building[J]. PCI Journal, 2002, 47(4): 56-71.
    [9] CATTANACH A, PAMPANIN S. 21st century precast: the detailing and manufacture of NZ’s first multi-storey PRESSS-building[C]//New Zealand Society for Earthquake Engineering Conference. Rotorua, New Zealand: NZSEE, 2008.
    [10] KURAMA Y, PESSIKI S, SAUSE R, LU L W. Seismic behavior and design of unbonded post-tensioned precast concrete walls[J]. PCI Journal, 1999, 38(3): 72-93.
    [11] PEREZ F J, SAUSE R, PESSIKI S. Analytical and experimental lateral load behavior of unboned posttensioned precast concrete walls[J]. Journal of Structural Engineering, 2007, 133(11):1531-1540.
    [12] ERKMEN B, SCHULTZ A E. Self-centering behavior of unbonded, post-tensioned precast concrete shear walls[J]. Journal of Earthquake Engineering, 2009, 13(7): 1047-1064.
    [13] RESTREPO J, RAHMAN A. Seismic performance of self-centering structural walls incorporating energy dissipators[J]. Journal of Structural Engineering, 2007, 133(11): 1560-1570.
    [14] HOLDEN T, RESTREPO J, MANDER J B. Seismic performance of precast reinforced and prestressed concrete walls[J]. Journal of Structural Engineering, 2003, 129(3): 286-296.
    [15] MARRIOTT D, PAMPANIN S, BULL D, PALERMO A. Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions[C]// New Zealand Society for Earthquake Engineering Conference. Rotorua, New Zealand: NZSEE, 2008.
    [16] Structural Engineers Association of California. Performance based seismic engineering SEAOC Vision 2000[S]. Sacramento, California: Structural Engineers Association of California,1995.
    [17] 建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社, 2010.(Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010.(in Chinese))
    [18] 中国地震动参数区划图:GB 18306—2015[S].北京:中国标准出版社, 2015.(Seismic ground motion parameter zonation map of China:GB 18306—2015[S]. Beijing: Standards Press of China, 2015. (in Chinese))
    [19] 建筑隔震设计标准(征求意见稿)[R]. 广州:国家标准《建筑隔震设计标准》编制组,2017.
    [20] ACI Innovation Task Group 5. Requirements for design of a special unbonded post-tensioned precast shear wall satisfying:ACI ITG-5.1(ITG 5.2- 09)[S]. Farmington Hills: American Concrete Institute, 2009.
    [21] RAHMAN M A, SRITHARAN S. An evaluation of force-based design vs. direct displacement-based design of jointed precast post-tensioned wall systems[J]. Earthquake Engineering & Structural Dynamics, 2006, 5(2): 285-296.
    [22] CHRISTOPOULOS C, FILIATRAULT A, FOLZ B. Seismic response of self-centering hysteretic SDOF systems[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(5): 1131-1150.
    [23] SEO C Y, SAUSE R. Ductility demands on self-centering systems under earthquake loading[J]. ACI Structural Journal, 2005, 102(2): 275-285.
    [24] PRIESTLEY M J N. Direct displacement-based design of precast/prestressed concrete buildings[J]. PCI Journal, 2002, 47(6): 66-79.
    [25] BOMMER J, ELNASHAI A. Displacement spectra for seismic design[J]. Journal of Earthquake Engineering, 1999, 3(1): 1-32.
    [26] CHOPRA A K, GOEL R K. Direct displacement-based design: use of inelastic vs. elastic design spectra[J]. Earthquake Spectra, 2001, 17(1): 47- 64.
    [27] CHOPRA A K, GOEL R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems: report No. PEER-1999/02[R]. Berkeley: Pacific Earthquake Engineering Research Center, University of California at Berkeley, 1999.
    [28] YANG B, LU X. Displacement-based seismic design approach for prestressed precast concrete shear walls and its application[J]. Journal of Earthquake Engineering, 2017,22(10): 1836-1860.
    [29] PENNUCCI D, CALVI G M, SULLIVAN T J. Displacementbased design of precast walls with additional dampers[J]. Journal of Earthquake Engineering, 2009, 13 (1): 40- 65.
    [30] European Committee for Standardization. Eurocode 8: design provisions for earthquake resistance: part 1: general rules, seismic actions and rules for buildings: BS EN 1998-1:2004[S]. Brussels: European Committee for Standardization, 2005.
    [31] PAMPANIN S, MARRIOTT D, PALERMO A. PRESSS design handbook[M]. Auckland: New Zealand Concrete Society Industry, 2010.
    [32] SHIBATA A, SOZEN M. Substitute structure method for seismic design in reinforced concrete[J]. Journal of Structural Engineering, 1976, 102(12): 3548-3566.
    [33] MAZZONI S,MCKENNA F,SCOTT M H,FENVES G L. Open system for earthquake engineering simulation[M]. Berkeley: Pacific Earthquake Engineering Research Center, University of California, 2006.
    [34] ANCHETA T D, DARRAGH R B, STEWART J P, et al. NGA-West 2 database[J]. Earthquake Spectra, 2014, 30(3): 989-1005.