磨溪—高石梯区块断层对裂缝分布的控制作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fault System and Its Controlling Effect on Fracture Distribution in Moxi–Gaoshiti Block, Sichuan Basin, China
  • 作者:徐珂 ; 戴俊生 ; 冯建伟 ; 任启强
  • 英文作者:XU Ke;DAI Junsheng;FENG Jianwei;REN Qiqiang;School of Geoscience, China University of Petroleum (East China);
  • 关键词:断层分析 ; 裂缝分布 ; 数值模拟 ; 龙王庙组 ; 磨溪—高石梯区块
  • 英文关键词:fault analysis;;fracture distribution;;numerical simulation;;Longwangmiao formation;;Moxi–Gaoshiti block
  • 中文刊名:XNSY
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2018-09-20 09:16
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.193
  • 基金:国家自然科学基金(41572124);; 国家科技重大专项(2016ZX05047003-003)
  • 语种:中文;
  • 页:XNSY201902002
  • 页数:13
  • CN:02
  • ISSN:51-1718/TE
  • 分类号:13-25
摘要
为了查明磨溪—高石梯区块断层展布与裂缝分布特征,以地质力学理论为指导,利用地震、测录井、岩芯及相关实验测试资料,识别不同断层类型,划分断层级别,开展裂缝定量预测工作,建立断层与裂缝分布关系模式。结果表明,磨溪—高石梯区块断层在纵向上规模大,延伸长,断开层位多,具有明显的分层性,可划分为3个构造层,且在平面上具有显著的分区性和分带性。不同规模、走向及性质的断层对裂缝的分布影响显著,裂缝密度普遍在1.5~5.0条/m,最高为7.0条/m,高值区主要分布于断层及其周缘。裂缝开度在断层发育带最高可达3 mm。磨溪—高石梯区块是一套断层-裂缝共生系统,主断裂控制次级断裂及裂缝的发育,次级断层控制局部裂缝发育。
        In order to determine the fault and fracture distribution characteristics of the Moxi–Gaoshiti block, faults were classified into different types and levels based on geomechanical theory and seismic, logging, core, and relevant experimental data.Fractures were quantitatively predicted, and the relationship between the distributions of faults and fractures was established.The results showed that the faults in the Moxi–Gaoshiti block have a large scale in the vertical direction, long extensions, a large number of disconnected layers, and obvious delamination. They can be divided into 3 structural layers, and have significant plane partitioning and banding. Faults with different scales, directions, and characteristics have significant influences on fracture distribution. Fracture density is generally 1.5~5.0/m with a maximum of 7.0/m. Zones with high values are primarily distributed in the fault and its periphery. The maximum fracture opening in the fault development zone can reach 3 mm. The Moxi–Gaoshiti block is a fault-fracture symbiotic system. The primary fault controls the development of secondary faults and fractures, and the secondary fault controls the development of local fractures.
引文
[1]陈朝明,马艳琳,李巧,等.安岳气田60×108 m3/a地面工程建设模块化技术[J].天然气工业,2016, 36(9):115-122. doi:10.3787/j.issn.1000-0976.2016.09.014CHEN Chaoming, MA Yanlin, LI Qiao, et al. Modularization for surface engineering construction of 60x108 m3/a in the Anyue Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9):115-122. doi:10.3787/j.issn.1000-0976.2016.09.014
    [2]徐春春,沈平,杨跃明,等.乐山一龙女寺古隆起震旦系一下寒武统龙王庙组天然气成藏条件与富集规律[J].天然气工业,2014, 34(3):1-7. doi:10.3787/j.-issn.1000-0976.2014.03.001XU Chunchun, SHEN Ping, YANG Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnvsi Yaleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3):1-7. doi:10.3787/j.issn.-1000-0976.2014.03.001
    [3]贾长青.胡家坝石炭系气藏水侵特征及治水效果分析[D].成都:西南石油学院,2005.JIA Changqing. Analysis of water invasion characteristics and water control effect of Carboniferous gas reservoirsin Hujiaba Area[D]. Chengdu:Southwest Petroleum Institute, 2005.
    [4]胡攀峰.双家坝区块石炭系气藏水侵机理及治水措施研究[D].成都:西南石油大学,2014.HU Panfeng. Study on water invasion mechanism and water control measures of Carboniferous gas reservoir in Shuangjiaba Block[D]. Chengdu:Southwest Petroleum University, 2014.
    [5]马腾,谭秀成,李凌,等.四川盆地早寒武世龙王庙期沉积特征与古地理[J].沉积学报,2016, 34(1):33-48.doi:10.14027/j.cnki.cjxb.2016.01.003MA Teng, TAN Xiucheng,LI Ling, et al. Sedimentary characteristics and lithofacies Palaeogeography during Longwangmiao period of early Cambrian, Sichuan Basin[J]. Acta Sedimentologica Sinica,2016,34(1):33-48. doi:10.14027/j.cnki.cjxb.2016.01.003
    [6]杜金虎,邹才能,徐春春,等.川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J].石油勘探与开发,2014, 41(3):268-277. doi:10.11698/PED.2014.03.02DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical andtechnical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development,2014, 41(3):268-277. doi:10.11698/PED.2014.03.02
    [7]金民东,曾伟,谭秀成,等.四川磨溪一高石梯区块龙王庙组滩控岩溶型储集层特征及控制因素[J].石油勘探与开发,2014, 41(6):650-660. doi:10.11698/PED.-2014.06.02JIN Mindong, ZENG Wei, TAN Xiucheng, et al. Characteristics and controlling factors of beaches ontrolled karst reservoirs in Cambrian Longwangmiao Formation, Moxi-Gaoshiti Area, Sichuan Basin, NW China[J].Petroleum Exploration and Development, 2014, 41(6):650-660. doi:10.11698/PED.2014.06.02
    [8]厚刚福,倪超,陈薇,等.川中地区大安寨段介壳滩沉积特征及控制因素[J].西南石油大学学报(自然科学版),2017, 39(1):25-34. doi:10.11885j.issn.1674-5086.2015.03.31.-04HOU Gangfu, NI Chao, CHEN Wei, et al. Sedimentary characteristics and factors controlling the shell beach in the Da'anzhai Member of the central Sichuan Basin[J]. Journal of Southwest Petroleum University(Science&Technology Edition), 2017, 39(1):25-34. doi:10.11885j.issn.-1674-5086,2015.03.31.04
    [9]殷积峰,谷志东,李秋芬.四川盆地大川中地区深层断裂发育特征及其地质意义[J].石油与天然气地质,2013, 34(3):376-382. doi:10.11743/ogg20130314YIN Jifeng,GU Zhidong,LI Qiufen. Characteristics of deep-rooted faults and their geological significances inDachuanzhong Area, Sichuan Basin[J]. Oil and Gas Geology, 2013, 34(3):376-382. doi:10.11743/ogg20130314
    [10]吴娟,刘树根,赵异华,等.四川盆地高石梯—磨溪构造震旦系一寒武系含气层系流体特征[J].成都理工大学学报(自然科学版),2014, 41(6):713-722. doi:10.3969/j.issn.1671-9727.2014.06.06WU Juan, LIU Shugen, ZHAO Yihua, et al. Fluid characteristics of upper Sinian-Lower Cambrian petroliferous strata in Gaoshiti Moxi structure of Sichuan Basin,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2014, 41(6):713-722.doi:10.3969/j.issn.1671-9727.2014.06.06
    [11]田艳红,刘树根,赵异华,等.四川盆地高石梯一磨溪构造龙王庙组储层差异性及气水分布[J].西安石油大学学报(自然科学版),2015.30(5):1-9, 15. doi:10.3969/j.issn.1673-064X.2015.05.001TIAN Yanhong, LIU Shugen, ZHAO Yihua, et al. Reservoir difference and gas-water distribution of Longwangmiao Formation in Gaoshiti-Moxi structure,Sichuan Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2015, 30(5):1-9, 15. doi:10.3969/j.issn.-1673-064X.2015.05.001
    [12]邹才能,杜金虎,徐春春,等.四川盆地震旦系一寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发,2014, 41(3):278-293. doi:10.11698/-PED.2014.03.03ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant Gas Field,Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014,41(3):278-293. doi:10.11698/PED.2014.03.03
    [13]刘树根,孙玮,罗志立,等.兴凯地裂运动与四川盆地下组合油气勘探[J].成都理工大学学报(自然科学版),2013, 40(5):511-520. doi:10.3969/j.issn. 1671-9727.-2013.05.03LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science&Technology Edition), 2013, 40(5):511-520. doi:10.3969/j.issn.-1671-9727.2013.05.03
    [14]钟勇,李亚林,张晓斌,等.川中古隆起构造演化特征及其与早寒武世绵阳一长宁拉张槽的关系[J].成都理工大学学报(自然科学版),2014, 41(6):703-712.doi:10.3969/j.issn.1671-9727.2014.06.05ZHONG Yong,LI Yalin,ZHANG Xiaobin,et al. The evolution characteristics of the central sichuan palaeouplift and its relationship with the early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology(Science&Technology Edi-tion), 2014, 41(6):703-712. doi:10.3969/j.issn.1671-9727.2014.06.05
    [15]沈安江,陈娅娜,潘立银,等.四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J].天然气地球科学,2017, 28(8):1176-1190. doi:10.11764/j.issn.1672-1926.2016.11.001SHEN Anjiang, CHEN Yana, PAN Liyin, et al. The facies and porosity origin of reservoirs:Case studies from Longwangmiao Formation of Cambrian, Sichuan Basin,and their implications to reservoir prediction[J]. Natural Gas Geoscience,2017, 28(8):1176-1190. doi:10.11764/-j.issn.1672-1926.2016.11.001
    [16]李忠权,潘懋,萧德铭,等.四川盆地拉张-挤压构造环境探讨[J].北京大学学报(自然科学版),2001,37(1):87-92. doi:10.13209/j.0479-8023.2001.015LI Zhongquan, PAN Mao, XIAO Deming, et al. Studies of extension-compression tectonic dynamic setting in Sichuan Basin[J].Acta Scientiarum Naturalium Universitaris Pekinensis,2001,37(1):87-92. doi:10.13209/j.-0479-8023.2001.015
    [17]汪泽成,赵文智,李宗银,等.基底断裂在四川盆地须家河组天然气成藏中的作用[J].石油勘探与开发,2008, 35(5):541-547. doi:10.3321/j.issn:1000-0747.-2008.05.003WANG Zecheng, ZHAO Wenzhi, LI Zongyin, et al. Role of basement faults in gas accumulation of Xujiahe Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2008, 35(5):541-547. doi:10.3321/j.issn:1000-0747.2008.05.003
    [18]曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982, 18(2):94-98. doi:10.6052/0459-1879-1982-2-1982-023ZENG Jinguang, LUO Yuanhua, CHEN Taiyuan. A method for the study of reservoir fracturing based on structural principal curvatures[J]. Chinese Journal of Theoretical and Applied Mechanics Letters, 1982, 18(2):94-98.doi:10.6052/0459-1879-1982-2-1982-023
    [19]周新桂,邓宏文,操成杰,等.储层构造裂缝定量预测研究及评价方法[J].地球学报,2003,24(2):175-180.doi:10.3321/j.issn:1006-3021.2003.02.015ZHOU Xingui, DENG Hongwen, CAO Chengjie, et al.The methods for quantitative prediction and evaluation of structural fissures in reservoirs[J]. Acta Geoscientica Sinica, 2003, 24(2):175-180. doi:10.3321/j.issn:1006-3021.2003.02.015
    [20]邓虎成.断层共生裂缝系统的发育规律及分布评价[D].成都:成都理工大学,2009.DENG Hucheng. The development and assesment of faultassociation fracture system:A case stuty of Daleel Field in Oman[D]. Chengdu:Chengdu University of Technology,2009.
    [21]赵继龙,王俊鹏,刘春,等.塔里木盆地克深2区块储层裂缝数值模拟研究[J].现代地质,2014, 28(6):1275-1283. doi:10.3969/j.issn.1000-8527.2014.06.019ZHAO Jilong,WANG Junpeng,LIU Chun,et al. Reservoir fracture numerical simulation of Keshen Block in Tarim Basin[J]. Geoscicence, 2014, 28(6):1275-1283. doi:10.-3969/j.issn.1000-8527.2014.06.019
    [22]文世鹏,李德同.储层构造裂缝数值模拟技术[J].石油大学学报(自然科学版),1996, 20(5):17-24.WEN Shipeng, LI Detong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of University of Petroleum, 1996, 20(5):17-24.
    [23]王珂.克深气田碎屑岩储层裂缝定量描述[D].东营:中国石油大学(华东),2014.WANG Ke. Quantitative description of reservoir fracture in clastic rocks of Keshen Gas Field[D]. Dongying:China University of Petroleum, 2014.
    [24]汪必峰,戴俊生,盛学香,等.牛35断块沙三中储层裂缝预测[J].中国石油大学学报(自然科学版),2009,33(3):18-21,26. doi:10.3321/j.issn:1673-5005.2009.-03.004WANG Bifeng,DAI Junsheng,SHENG Xuexiang,et al.Reservoir fracture forecast of mid-Shasan Member in Niu-35 fault block[J]. Journal of China University of Petroleum, 2009, 33(3):18-21, 26. doi:10.3321/j.issn:1673-5005.2009.03.004
    [25]冯建伟,戴俊生,马占荣,等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报,2011,32(4):664-671.FENG Jianwei, DAI Junsheng, MA Zhanrong, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4):664-671.
    [26]季宗镇,戴俊生,汪必峰.地应力与构造裂缝参数间的定量关系[J].石油学报,2010, 31(1):68-72.JI Zongzhen, DAI Junsheng, WANG Bifeng. Quantitative relationship between crustal stress and parameters of tectonic fracture[J]. Acta Petrolei Sinica, 2010,31(1):68-72.
    [27]王珂,戴俊生,商琳,等.曲率法在库车坳陷克深气田储层裂缝预测中的应用[J].西安石油大学学报(自然科学版),2014,29(1):34-39. doi:10.3969/j.issn.1673-064X.2014.01.006WANG Ke,DAI Junsheng,SHANG Lin,et al. Reservoir fracture prediction of Keshen gasfield in Kuqa Depression using principal curvature method[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(1):34-39. doi:10.3969/j.issn.1673-064X.2014.01.006
    [28]徐珂,戴俊生,付晓龙,等.基于有限元法的层状岩体破裂规律探讨[J].地质力学学报,2015,21(3):330-340.doi:10.3969/j.issn.1006-6616.2015.03.003XU Ke, DAI Junsheng, FU Xiaolong, et al. Discussion on the fracture of layered rock mass based on the finite element method[J]. Journal of Geomechanics, 2015, 21(3):330-340. doi:10.3969/j.issn.1006-6616.2015.03.003
    [29]巩磊,高铭泽,曾联波,等.影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系一新近系为例[J].天然气地球科学,2017, 28(2):199-208.doi:10.11764/j.issn.1672-1926.2016.12.003GONG Lei, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs:A case study of Jurassic-Neogene in the Kuqa foreland Basin[J]. Natural Gas Geoscience, 2017, 28(2):199-208. doi:10.11764/j.issn.1672-1926.2016.12.003