水星探测器精密定轨软件研制及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development of Mercury Precise Orbit Determination Software and Application
  • 作者:刘山洪 ; 鄢建国 ; 杨轩 ; 叶茂 ; 金炜桐 ; 李斐
  • 英文作者:LIU Shanhong;YAN Jianguo;YANG Xuan;YE Mao;JIN Weitong;LI Fei;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University;Chinese Antarctic Center of Surveying and Mapping,Wuhan University;
  • 关键词:深空探测 ; 水星重力场 ; 双程测距/测速 ; 精密定轨 ; 同波束VLBI
  • 英文关键词:deep space exploration;;Mercury gravity fields;;two-way range/range-rate;;precise orbit determination(POD);;same-beam VLBI(SBI)
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:武汉大学测绘遥感信息工程国家重点实验室;武汉大学中国南极测绘研究中心;
  • 出版日期:2018-12-17 15:09
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金(41374024,41174019);; 湖北省自然科学基金(2015CFA011)~~
  • 语种:中文;
  • 页:WHCH201904006
  • 页数:8
  • CN:04
  • ISSN:42-1676/TN
  • 分类号:39-46
摘要
考虑到中国有望开展自主水星探测任务,研制了国内首套具有自主知识产权的水星探测器精密定轨及动力学参数解算软件系统MERGREAS(Mercury Gravity Recovery and Analysis Software/System)。从星历预报、仿真观测量、精密定轨等3个方面与GEODYN-II软件进行详细的对比分析,两者一天内的探测器星历预报位置差异在10~(-7)~10~(-8) m的量级,速度差异在10~(-9)~10~(-12) m/s的量级;仿真双程测距差异接近10~(-4) m的量级,双程测速差异为4×10~(-6) m/s左右;仿真定轨差异则为X方向0.2 m,Y方向0.7 m,Z方向0.5 m,表明MERGREAS各项精度与GEODYN-II基本达到一致。模拟同波束数据进行水星探测器和着陆器定位解算,轨道器位置误差为1 m左右,着陆器位置误差为0.88 m;考虑水星重力场和自转模型误差的影响之后,解算的轨道器位置误差为13.6 m,着陆器位置误差为250.3 m。该软件可以为中国未来水星探测任务中的轨道跟踪数据处理提供参考,具有一定的应用价值。
        We have developed the first Mercury precise orbit determination and geoscience parameters solution software system with independent intellectual property rights, MERGREAS, considering the great prospect of its future missions in China. The software simulates forecasting ephemeris, observations, and precise orbit determination(POD), and then results are compared with GEODYN-II. The difference magnitude of the forecasting ephemeris is at 10~(-7)-10~(-8) m in a day, and the speed deviation is at the magnitude of 10~(-9)-10~(-12) m/s; besides, two-way range difference is 10~(-4) m and two-way range-rate difference is 4×10~(-6) m/s. In POD, the X direction error is 0.2 m, Y direction 0.7 m, Z direction 0.5 m, therefore, the simulation results show that the software precision of POD can reach the level of GEODYN-II for MESSENGER. Meanwhile, we analyze the Mercury lander with simulation of same-beam very long base line interferometry(VLBI), with position error of 1 m for orbiter and 0.88 m for lander. With the errors combination from Mercury gravity models and Mercury rotation models taken into account, the position error is 13.6 m for orbiter and 250.3 m for lander. This software can provide reference for the Mercury tracking task in future. These research results have certain application value to China future Mercury exploration missions.
引文
[1] Information Office of the State Council of the People’s Republic of China. “2016 China’s Space” White Paper[J]. Erospace China, 2017(1): 10-17(中华人民共和国国务院新闻办公室. 《2016中国的航天》白皮书[J]. 中国航天, 2017(1):10-17)
    [2] Duan Jianfeng,Zhang Yu,Chen Ming,et al. Application of GRAIL Lunar Gravity Field Model in Attitude and Orbit Control for CE-3 Satellite[J].Journal of Spacecraft TT and C Technology, 2014, 33(4): 342-347 (段建锋,张宇,陈明,等.嫦娥三号姿轨控过程中GRAIL重力场模型的应用[J].飞行器测控学报, 2014, 33(4): 342-347)
    [3] Dunne J A. Mariner 10 Mercury Encounter[J]. Science, 1974, 185(4 146): 141-142
    [4] Solomon S C, Mcnutt Jr R L, Watters T R, et al. Return to Mercury: A Global Perspective on MESSENGER’s First Mercury Flyby[J]. Science, 2008, 321(5 885): 59-62
    [5] Mcnutt R L, Solomon S C, Gold R E, et al. The MESSENGER Mission to Mercury: Development History and Early Mission Status[J]. Advances in Space Research, 2006, 38(4): 564-571
    [6] Benkhoff J,van Casteren J, Hayakawa H, et al. BepiColombo—Comprehensive Exploration of Mercury: Mission Overview and Science Goals[J]. Planetary and Space Science, 2010, 58(1-2): 2-20
    [7] Mukai T, Yamakawa H, Hayakawa H, et al. Pre- sent Status of the BepiColombo/Mercury Magnetospheric Orbiter[J]. Advances in Space Research, 2006, 38(4): 578-582
    [8] Ye Mao. Development of Lunar Spacecraft Precision Orbit Determination Software System and Research on a Four Way Relay Tracking Measurement Mode [D]. Wuhan:Wuhan University, 2016(叶茂. 月球探测器精密定轨软件研制与四程中继跟踪测量模式研究[D].武汉:武汉大学, 2016)
    [9] Vetter J R. Fifty Years of Orbit Determination[J]. Johns Hopkins Apl Technical Digest, 2007, 27(3): 239-252
    [10] Schettino G, Tommei G.Testing General Relativity with the Radio Science Experiment of the BepiColombo Mission to Mercury[J]. Universe, 2016, 2(3): 21-46
    [11] Evans S, Taber W, Drain T, et al. Monte: The Next Generation of Mission Design and Navigation Software[C]. 6th International Conference on Astrodynamics Tools and Techniques, Darmstadtium, Germany, 2016
    [12] Yan Jianguo, Xu Luyuan, Li Fei,et al. Lunar Core Structure Investigation: Implication of GRAIL Gravity Field Model[J]. Advances in Space Research, 2015, 55(6): 1 721-1 727
    [13] Yan Jianguo. Lunar Gravity Field Research and Lunar Satellite Precise Orbit Determination[D]. Wuhan: Wuhan University, 2007( 鄢建国. 月球重力场研究及绕月卫星精密定轨[D]. 武汉: 武汉大学, 2007)
    [14] Thornton C L, Border J S.Radiometric Tracking Techniques for Deep-Space Navigation[M]. US:John Wiley & Sons, 2003
    [15] Jin Weitong, Li Fei, Yang Xuan,et al. Research on High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration [J]. Geomatics and Information Science of Wuhan University,2018, 43 (10): 1 483-1 489(金炜桐,李斐,杨轩,等. 行星际深空探测中双程测速的高精度计算方法研究[J]. 武汉大学学报·信息科学版, 2018, 43 (10): 1 483-1 489)
    [16] Tiberis F D, Simone L, Gelfusa D, et al. The X/X/KA-band Deep Space Transponder for the BepiColombo Mission to Mercury[J].Acta Astronautica, 2011, 68(5-6): 591-598
    [17] Padovan S, Margot J L, Ii S A H, et al. The Tides of Mercury and Possible Implications for Its Interior Structure[J]. Journal of Geophysical Research Planets, 2014,119(4):850-866
    [18] Verma A K, Margot J L.Mercury’s Gravity, Tides, and Spin from MESSENGER Radio Science Data[J]. Journal of Geophysical Research Planets, 2016, 121(9):1 627-1 640
    [19] Stark A, Oberst J, Preusker F, et al. Mercury’s Rotational Parameters from MESSENGER Image and Laser Altimeter Data: A Feasibility Study[J]. Planetary & Space Science, 2015, 117(1):64-72