飓风Isidore与海洋相互作用数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Numerical Simulation of Interaction Between Hurricane Isidore and Ocean
  • 作者:王斌 ; 张晓爽 ; 赵玮 ; 李亚文 ; 党超群 ; 刘宁 ; 马昕
  • 英文作者:WANG Bin;ZHANG Xiaoshuang;ZHAO Wei;LI Yawen;DANG Caoqun;LIU Ning;MA Xin;National Center of Marine Technology of China;National Center of Marine Information of China;Key Lab.of Physical Oceanography of Ministry of Education of China, Ocean University of China;
  • 关键词:飓风Isidore ; 数值模拟 ; 上层海洋响应 ; 墨西哥湾
  • 英文关键词:Hurricane Isidore;;Numerical simulation;;Upper Ocean Response;;Mexico Gulf
  • 中文刊名:HYFB
  • 英文刊名:Transactions of Oceanology and Limnology
  • 机构:国家海洋技术中心;国家海洋信息中心;中国海洋大学物理海洋教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:海洋湖沼通报
  • 年:2019
  • 期:No.166
  • 基金:国家海洋局海洋环境信息保障技术重点实验室开放课题基金资助;; 青岛海洋科学与技术国家实验室“鳌山科技创新计划”(2017ASKJ01-02);; 国家自然科学基金青年基金(41506039);; 国家重点研发计划项目(2016YFC1400501);国家重点研发计划(2017YFF0206404);; 中央高校基本可研业务费项目(201562007)资助
  • 语种:中文;
  • 页:HYFB201901003
  • 页数:8
  • CN:01
  • ISSN:37-1141/P
  • 分类号:15-22
摘要
本文利用MM5大气模型和HYCOM海洋环流模型,模拟研究了2002年飓风Isidore过境墨西哥湾后上层海洋的响应以及墨西哥湾常态水(Gulf common water,GCW)和湾流(Loop Current,LC)对飓风Isidore的不同响应。飓风Isidore穿过GCW区后,导致海表最大降温接近5℃,混合层深度由30m加深到70m,上层海洋损失热量较多,上层海洋的结构恢复时间较长;但在LC区,由于亚热带持续不断的高温、高速水体输运,该区域水体具有较深的混合层和较大的能量,虽然在飓风过程中损失了较多的热量,但仅造成2℃的海表面降温,上层海洋的结构恢复时间较短;此外,飓风过境后,在上层海洋激发近惯性震荡,在LC区可导致1.0m/s近惯性震荡流,能量可传播至1500m以深,但在GCW区,由于较浅的上混合层、较弱的流速和较强的层化结构,近惯性震荡运动影响深度较浅。
        The Hybrid Coordinate Ocean Model(HYCOM) was used in this study to examine the different ocean feedback of Gulf Common Water(GCW) and Loop Current(LC) to hurricanes during the 2002 hurricane season. The HYCOM simulations was coincided well with the satellite observations, which showed a similar SST cooling scope and a obvious maximum SST cooling close to 5 C cross the Yucatan Shelf after hurricane Isidore. the mixing layer depth increased form 25 m to about 70 m. In LC region, because of its deep mixing layer(ML) and persistent heat and kinetic energy transports from the subtropical ocean, the maximum SST cooling was only about 2 C. After hurricanes, near-inertial oscillation dominated the upper ocean which could cause near-inertial currents more than 1.0 m/s in LC region, the induced energy could transfer to the interior ocean more than 1500 m. However, the energy propagation depth decreased to about 1000 m in GCW region, which may be caused by its shallow mixing layer, weak currents and strong stratification.
引文
[1] Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph. D. Dissertation, Pennsylvania State University, University Park, 278pp.
    [2] Bleck, R., 2002: An oceanic general circulation model framed in hybridisopycnic-Cartesiancoordinates. Ocean Modeling, 4, 55-88.
    [3] Brooks,R.C.,1983: The wakes of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117-129.
    [4] Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of theocean's nonlinear baroclinic response to translating hurricanes.J. Phys. Oceanogr., 8, 468-480.
    [5] Chassignet, E. P., L.T. Smith, G.R. Halliwell, and R. Bleck, 2003: North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity. J. Phys. Oceanogr., 33, 2504-2526.
    [6] Elsberry, R. L., T. S. Fraim, and R. N. Trapnell Jr., 1976: A Mixed Layer Model of the Oceanic Thermal Response to Hurricanes. J. Geophys. Res., 81(6), 1153-1162.
    [7] Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys.Oceanogr., 14, 1129-1151.
    [8] Halliwell, G. R., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts. Mon. Wea. Rev., 136, 2576-2591.
    [9] Hong, X. D., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: TheInteraction between Hurricane Opal (1995) and a Warm Core Ring in the Gulf of Mexico. Mon. Wea. Rev., 128,1347-1365.
    [10] Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed-layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429.
    [11] Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscalefeatures on the tropical cyclone induced mixed layer response.J. Phys. Oceanogr., 33,649-676.
    [12] Kroll, J., 1975: The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar. Res., 33, 15-51.
    [13] Leaman, K. D., and T. B. Sanford, 1975: Vertical Energy Propagation of Inertial Waves: A Vector Spectral Analysis of Velocity Profiles, J. Geophys. Res., 80(15), 1975-1978.
    [14] Leipper, D. F. and D. Volgenau, 1972: Hurricane Heat Potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218-224.
    [15] Mainelli, M., M. Demaria, L. K. Shay and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent atlantic category 5 hurricanes. Wea. Forecasting. 23, 3-15.
    [16] Morozov E. G. and M. G. VELARDE, 2008: Inertial Oscillations as Deep Ocean Response toHurricanes. Journal of Oceanography, 64, 495-509.
    [17] Prasad, T. G., and P. J. Hogan, 2007: Upper-ocean response to Hurricane Ivan in a 1/25 degrees nested Gulf of Mexico HYCOM. J. Geophys. Res. 112, C04013, doi:10.1029/2006JC003695.
    [18] Palmen, E., 1948:On the formation and structure of tropical cyclones. Geophysics, 3, 26-38.
    [19] Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulatedwind-generated inertial oscillations. Deep Sea Res., 17, 153-175.
    [20] Pollard, R., 1980: Properties of Near-Surface Inertial Oscillations. J. Phys. Oceanogr., 10, 385-398.
    [21] Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr.,11, 153-175.
    [22] Price, J. F., 1983: Internal Wave Wake of a Moving Storm. Part I. Scales, Energy Budget and Observations. J. Phys. Oceanogr.,13, 949-965.
    [23] Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane, J. Phys. Oceanogr., 24, 233-260.
    [24] Qi, H., R. A. de Szoeke, C. A. Paulson and C. C. Eriksen, 1995: The structure of near- inertial waves during ocean storms. J. Phys. Oceanogr., 25, 2853-2871.
    [25] Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean Response to a Hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 2065-2083.
    [26] Shay, L. K. and R. L. Elsberry (1987): Near-inertial ocean current response to hurricane Frederic. J. Phys. Oceanogr., 17, 1249-1269.
    [27] Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical Structure of the Ocean Current Response to a Hurricane. J. Phys. Oceanogr., 19, 649-669.
    [28] Shay, L.K., P.G. Black, A.J. Mariano, J.D. Hawkins,and R.L. Elsberry, 1992: Upper ocean response to hurricane Gilbert. J. Geophys. Res., C12, 20277-20248.
    [29] Shay, L. K., A. J. Mariano, S. D. Jacob, and E. H. Ryan, 1998: Mean and Near-Inertial Ocean Current Response to Hurricane Gilbert. J. Phys. Oceanogr., 28, 858-889.
    [30] Shay, L. K., 1999: Upper ocean response to tropical cyclones. Rosenstiel School of Mar. and Atmos. Sci. Tech. Rept., RSMAS-99-003.
    [31] Shay, L.K., G.J. Goni, and P.G. Black, 2000: Effects of Warm Oceanic Features onHurricane Opal. Monthly Weather Review, 128, 131-148.
    [32] Shay, L. K., and E. W. Uhlhorn, 2008: Loop Current Response to Hurricanes Isidore and Lili. Monthly Weather Review,136, 3248-3274.
    [33] Stramma, L., P. Cornillon and J. F. Price, 1986:Satellite Observations of sea surface cooling by hurricanes. J. Geophys. Res., 91,5031-5035.
    [34] Walker, N.D., R.R. Leben, S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico, Geophysical Research Letters, 32, L18610, doi:10.1029/2005GL023716.
    [35] Zamudio, L., and P. J. Hogan, 2008: Nesting the Gulf of Mexico in Atlantic HYCOM: Oceanographic processes generated by Hurricane Ivan., 21, 106-125.