闭环空气悬架系统的车身高度与姿态控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Height and Leveling Control of Closed-Loop Air Suspension System
  • 作者:李海燕 ; 张锋 ; 汪涵 ; 罗顺安
  • 英文作者:LI Haiyan;ZHANG Feng;WANG Han;LUO Shun′an;College of Mechanical Engineering and Automation,Huaqiao University;
  • 关键词:空气悬架 ; 步进控制 ; 车高控制 ; 姿态控制 ; AMESim
  • 英文关键词:air suspension;;step control;;height control;;leveling control;;AMESim
  • 中文刊名:HQDB
  • 英文刊名:Journal of Huaqiao University(Natural Science)
  • 机构:华侨大学机电及自动化学院;
  • 出版日期:2019-03-20
  • 出版单位:华侨大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.166
  • 基金:国家自然科学基金资助项目(51405169);; 福建省自然科学基金面上资助项目(2015J01636);; 华侨大学研究生科研创新基金资助项目(17013080014)
  • 语种:中文;
  • 页:HQDB201902001
  • 页数:7
  • CN:02
  • ISSN:35-1079/N
  • 分类号:7-13
摘要
针对传统车身高度调节方法导致的闭环空气悬架系统较大俯仰角问题,提出两种不同车身步进控制算法,得到各个空气弹簧的目标高度.利用比例-积分-微分(PID)控制器对电磁阀的电流信号占空比进行调节.将提出的两种控制算法在MATLAB/Simulink进行实现,并与AMESim平台上建立的空气悬架模型进行联合仿真.仿真结果表明:两种算法都能减小车身高度控制过程中造成的俯仰角,且第二种步进控制方法的效果更优.
        To deal with the problem about a large pitch angle caused by using the conventional height adjustment method in a closed-loop air suspension system,two different step control algorithms were presented to determine the target height of every air spring,and then a proportional-integral-derivative(PID)controller was used to adjust the duty ratio of valves′electric current signals.The proposed algorithms were implemented in the MATLAB/Simulink and then co-simulated with the air suspension model built on the AMESim platform.The simulation results indicate that both of two algorithms have an obvious effect on the reduction of pitch angle,and the second step control algorithm performs better.
引文
[1]SANKARANARAYANAN V,EMEKLI M E,GILVENC B A,et al.Semiactive suspension control of a light commercial Vehicle[J].IEEE/ASME Transactions on Mechatronics,2008,13(5):598-604.DOI:10.1109/ICCAS.2007.4406971.
    [2]HIROSE M,MATSUSHIGE S,BUMA S,et al.Toyota electronic modulated air suspension system for the 1986soarer[J].IEEE Transactions on Industrial Electronics,1988,35(2):193-200.DOI:10.1109/41.192649.
    [3]TANIGUCHI S,YORIFUJI T,HAMADA T.Analysis and optimization of front suspension characteristics based on ADAMS[J].Modern Manufacturing Engineering,2013,32(3):43-47.DOI:10.1111/j.1365-2230.1994.tb02689.x
    [4]于微波,张立柱,李楠.基于汽车空气悬架系统的车高模糊控制研究[J].仪器仪表用户,2006,13(2):6-8.DOI:10.3969/j.issn.1671-1041.2006.02.004.
    [5]SUN Xiaoqiang,CAI Yingfeng,CHAO Chunyuan,et al.Vehicle height and leveling control of electronically controlled air suspension using mixed logical dynamical approach[J].Science China Technological Sciences,2016,59(12):1-11.DOI:10.1007/s11431-015-0984-y.
    [6]江洪,钱宽,邱亚东,等.气路闭环空气悬架系统能量损耗建模及分析[J].中国机械工程,2014,25(23):3239-3244.DOI:0.3969/j.issn.1004-132X.2014.23.022.
    [7]何二宝,杜群贵.闭环空气悬架系统车高调节建模与能耗分析[J].机械设计与制造,2012(5):45-47.DOI:10.3969/j.issn.1001-3997.2012.05.017.
    [8]江洪,杨勇福,王玉杰,等.气路闭环互联空气悬架车高控制与能耗特性试验[J].中南大学学报(自然科学版),2017,48(1):270-276.DOI:10.11817/j.issn.1672-7207.2017.01.036.
    [9]杨阳阳.气路闭环空气悬架系统车身高度调节系统研究[J].现代经济信息,2016(12):349-350.DOI:10.3969/j.issn.1001-828X.2016.18.289.
    [10]KIM H,LEE H.Fault-tolerant control algorithm for a four-corner closed-loop air suspension system[J].IEEETransactions on Industrial Electronics,2011,58(10):4866-4879.DOI:10.1109/TIE.2011.2123852.
    [11]林添良,杨杰,刘强,等.新型液压挖掘机回转驱动系统仿真[J].华侨大学学报(自然科学版),2013,34(3):247-252.DOI:10.11830/issn.1000-5013.2013.03.0247.
    [12]宋意,杨建红,房怀英,等.立轴冲击式破碎机除尘的数值模拟与仿真分析[J].华侨大学学报(自然科学版),2018,39(1):14-19.DOI:10.11830/ISSN.1000-5013.201704048.
    [13]陈黎卿,林建飞,汤池潜,等.电控空气悬架系统参数的多目标优化[J].机械科学与技术,2017,36(3):462-468.DOI:10.13433/j.cnki.1003-8728.2017.0322.
    [14]严天一,李聪聪,CHO X H,等.基于模型的电控空气悬架系统控制策略与实车试验[J].农业机械学报,2017,48(5):385-389.DOI:10.6041/j.issn.1000-1298.2017.05.049.
    [15]李元鹏,郭疆,孙继明.基于AMESim的整车主动悬架建模仿真研究[J].液压气动与密封,2017,37(7):16-19.DOI:10.3969/j.issn.1008-0813.2017.07.005.
    [16]张昆,习文辉,邓文华,等.基于CarSim-Simulink联合仿真的整车半主动悬架模糊控制仿真研究[J].昆明理工大学学报(自然科学版),2015(1):39-44.DOI:10.16112/j.cnki.53-1223/n.2015.01.008.
    [17]戚壮,李芾,黄运华,等.基于AMESim平台的轨道车辆空气弹簧系统气动力学仿真模型研究[J].中国铁道科学,2013,34(3):79-86.DOI:10.3969/j.issn.1001-4632.2013.03.13.