W-In体系溶质晶界偏聚行为的第一性原理计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries
  • 作者:王奇 ; 唐法威 ; 侯超 ; 吕皓 ; 宋晓艳
  • 英文作者:Wang Qi;Tang Fa-Wei;Hou Chao;Lü Hao;Song Xiao-Yan;Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology;
  • 关键词:第一性原理计算 ; 钨基合金 ; 溶质偏聚 ; 热稳定性
  • 英文关键词:first-principles calculations;;tungsten alloy;;solute segregation;;thermal stability
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京工业大学材料科学与工程学院新型功能材料教育部重点实验室;
  • 出版日期:2019-04-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2018YFB0703902,2016YFB0700503);; 国家自然科学基金(批准号:51631002,51425101)资助的课题~~
  • 语种:中文;
  • 页:WLXB201907022
  • 页数:8
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:230-237
摘要
基于第一性原理构建了钨基合金体系的溶质偏聚模型,以W-In体系为例研究了不同浓度下溶质的晶界偏聚行为和成键特征,从电子结构层面揭示了W-In体系的键合作用,预测了W-In体系界面稳定性随溶质浓度的变化规律.结合键布居、电荷密度、差分电荷密度和态密度等电子结构分析,发现了W-In体系中溶质原子在偏聚过程中的键性转变特征,阐明了W-In键由晶粒内部的离子键过渡为晶界区域强共价键的微观机理.模型计算首次得到了W-In体系中溶质本征偏聚能随In浓度的非单调变化规律,结合键合作用和能量分析揭示了溶质浓度对本征偏聚能的影响机制.计算预测了W-In体系达到高热稳定性所需的最佳溶质浓度范围和应避开的溶质浓度范围.本研究为具有高温稳定性的钨基合金材料的设计与制备提供了理论基础和定量化指导.
        In a tungsten-based alloy system, the appropriate solute elements are selected to produce strong segregation effect to reduce the interfacial formation energy, which can effectively improve the mechanical property and thermal stability of the system. Based on the first principles calculation, the solute segregation model of tungsten-based alloys is constructed. The W-In alloy is taken for example to study the grain boundary segregation behavior and bonding characteristics of solute at different concentrations. The bonding of the W-In system is revealed from the electronic structure, and the variation of the interface stability of the W-In system with the solute concentration is predicted. Based on the electronic structure analysis of bond population,differential charge density and density of states, the bond transition characteristics of solute atoms in the W-In system in the segregation process are found, and the microscopic mechanism of the W-In bond transitioning from the ionic bond inside the grain to the strong covalent bond in the grain boundary region is elucidated: the difference between the grain boundary and the intragranular structure leads to a decrease in the valence state of the W atom in the grain boundary and the oxidizability is weakened, eventually leading to the W-In bond transition. The non-monotonic variation of the intrinsic segregation energy of the solute with the concentration of In in the W-In system is obtained. The mechanism of the influence of solute concentration on the intrinsic segregation energy is revealed by analyzing the bond interaction and energy: the solute concentration remarkably affects the bond strength before and after the W-In bond segregation, resulting in a significant decrease in the segregation ability when the solute concentration is close to 0.0976, and finally the variation of the segregation energy with solute concentration is obtained. Based on the analysis of the phase mechanical stability and the solute segregation in the grain boundary, without considering the vacancy concentration, the optimal solute concentration range and the range that needs to be circumvented in the W-In alloy system with high thermal stability are predicted by the calculations of the model, which are 0.106-0.125 and 0.0632-0.106,respectively. This study provides theoretical basis and quantitative guidance for designing and preparing the tungsten-based alloy materials with high thermal stability.
引文
[1]Zhou X Q,Li S K,Liu J X,Wang Y C,Wang X 2010 Mater.Sci.Eng.A 527 4881
    [2]Scapin M 2015 Int.J.Refract.Met.Hard Mater.50 258
    [3]Nguyen Manh D,Muzyk M,Kurzydlowski K J,Baluc N L,Rieth M,Dudarev S L 2011 Key Eng.Mater.465 15
    [4]Tschopp M A,Murdoch H A,Kecskes L J,Darling K A 2014JOM 66 1000
    [5]Posthill J B,Hogwood M C,Edmonds D V 1986 Powder Metall.29 45
    [6]Gul H,Uysal M,?etinkaya T,Guler M O,Alp A,Akbulut H2014 Int.J.Hydrogen Energ.39 21414
    [7]Millett P C,Selvam R P,Saxena A 2007 Acta Mater.55 2329
    [8]Hirouchi T,Takaki T,Tomita Y 2010 Int.J.Mech.Sci.52309
    [9]Song X,Zhang J,Li L,Yang K,Liu G 2006 Acta Mater.545541
    [10]Liu F,Kirchheim R 2004 Scr.Mater.51 521
    [11]Liu F,Kirchheim R 2004 J.Cryst.Growth 264 385
    [12]Liu F,Yang G,Kirchheim R 2004 J.Cryst.Growth 264 392
    [13]Liu F,Kirchheim R 2004 Thin Solid Films 466 108
    [14]Darling K A,Vanleeuwen B K,Koch C C,Scattergood R O2010 Mater.Sci.Eng.A 527 3572
    [15]Chookajorn T,Murdoch H A,Schuh C A 2012 Science 337951
    [16]Kawazoe Y 2001 Mater.Design 22 61
    [17]Bond A D,Solanko K A,Jacco V D S,Neumann M A 2011CrystEngComm 13 1768
    [18]Braithwaite J S,Rez P 2005 Acta Mater.53 2715
    [19]Yamaguchi M,Kaburaki H,Shiga M 2004 J.Phys.:Condens.Matter 16 3933
    [20]Reza M,Laws K J,Nikki S,Michael F 2018 Acta Mater.158257
    [21]Wu X,You Y W,Kong X S,Chen J L,Luo G N,Lu G H,Liu C S,Wang Z 2016 Acta Mater.120 315
    [22]Meng F,Li J H,Zhao X 2014 Acta Phys.Sin.23 237102(in Chinese)[孟凡顺,李久会,赵星2014物理学报23 237102]
    [23]Tang F,Liu X,Wang H,Hou C,Lu H,Nie Z,Song X 2019Nanoscale 11 1813
    [24]Scheiber D,Pippan R,Puschnig P,Ruban A,Romaner L2016 Int.J.Refract.Met.Hard Mater.60 75
    [25]Segall M D,Lindan P J D,Probert M J 2002 J.Phys.:Condens.Matter 14 2717
    [26]Vanderbilt D 1990 Phys.Rev.B 41 7892
    [27]Perdew J P,Burke K,Ernzerhof M 1996 Phys.Rev.Lett.773865
    [28]Ceperley D M,Alder B J 1980 Phys.Rev.Lett.45 566
    [29]Pfrommer B G,Cote M,Louie S G,Cohen M L 1997 J.Comput.Phys.131 233
    [30]Scheiber D,Razumovskiy V I,Puschnig P,Pippan R,Romaner L 2015 Acta Mater.88 180
    [31]Zdanuk E J,Krock R H 1969 US Patent 3 423 203
    [32]Chelikowsky J R,Cohen M L 1976 Phys.Rev.B 14 556
    [33]Trelewicz J R,Schuh C A 2009 Phys.Rev.B 79 094112
    [34]Asta M,Wolverton C,Ozoli??V 2004 Phys.Rev.B 69144109