近40年三江平原极端降水时空变化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Variation Characteristics of Extreme Precipitation in the Sanjiang Plain in Recent 40 Years
  • 作者:鲁菁 ; 张玉虎 ; 高峰 ; 刘玉洁
  • 英文作者:LU Jing;ZHANG Yuhu;GAO Feng;LIU Yujie;College of Resources, Environment and Tourism, Capital Normal University;Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;
  • 关键词:极端降水指数 ; Mann-Kendall突变 ; 累积距平 ; Hurst指数 ; 江平
  • 英文关键词:extreme precipitation index;;Mann-Kendall method;;cumulative distance;;Hurst index;;Sanjiang Plain
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:首都师范大学资源环境与旅游学院;中国科学院地理科学与资源研究所;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:国家重点研发计划项目(2017YFC0406002);; 中国科学院青年创新促进会会员项目(2016049);; 中国清洁发展机制基金赠款项目(2014108)
  • 语种:中文;
  • 页:STBY201902042
  • 页数:11
  • CN:02
  • ISSN:61-1272/P
  • 分类号:276-286
摘要
研究区域尺度极端降水时空格局有助于区域整体性评估降水可能带来的风险。以三江平原21个气象站点1979—2014年逐日降水量观测资料为基础,选取了11个极端降水指数,应用气候倾向率、克里金插值法、Mann-Kendall非参数检验、累积距平、R/S分析法和相关分析法,从降水强度、降水频率等方面分析了近40 a三江平原极端降水时空变化特征,并对极端降水指数进行了趋势预测。研究表明:(1)近40 a三江平原极端降水指数整体呈减少趋势,且降水量减少主要表现为降水强度降低;其中持续干燥日数(CDD)、普通日降水强度(SDII)、5日最大降水量(RX5day)存在明显突变现象,均在2000年左右发生"由多到少"的突变;(2)极端降水指数变化趋势存在显著空间差异,RX1day,RX5day,R99p呈减少趋势的站点所占比例分别为52.4%,61.9%,61.9%;年降水总量(PRCPTOT)整体呈现"西北、东南地区上升趋势显著,东北、西南地区以下降趋势为主"的降水分布格局,极端降水总量(R99P)上升幅度较大的地区主要集中于平原中部的宝清县;(3)根据极端降水指数的历史变化趋势与Hurst指数叠加结果预测可知,未来极端降水指数基本呈上升趋势。研究结果可为三江平原农业区充分利用天然降水、预估农业气象灾害影响提供科学依据。
        Within the context of climate change, extreme climate events occurred frequently. By using climatic tendency rate, Kriging interpolation method, Mann-Kendall nonparametric statistical test, accumulative distance leveling, R/S analysis, the variation characteristics and trend prediction of extreme precipitation process in the target area were analyzed based on long-term(1979—2014) daily precipitation data from 21 meteorological stations. The results showed a decreasing trend on the extreme precipitation over the past 40 years in the Sanjiang Plain, which was mainly reflected by the precipitation intensity. Moreover, there were obvious mutations in CDD, SDII, and RX5 day. There was a significant spatial difference in the extreme precipitation variation trend. The percentages of sites with decreasing RX1 day, RX5 day and R99 p were 52.4%, 61.9% and 61.9%, respectively. The total annual precipitation(PRCPTOT) was presented as ‘increase in Northwest-Southeast and decrease in Northeast-Southwest'. According to the historical trend of the extreme precipitation index and the prediction of the superposition of the Hurst index, it can be seen that the future extreme precipitation index will present the rising trend in the future. These results can provide scientific basis for making full use of natural precipitation and predicting the influence of agrometeorological disasters in the agricultural area of Sanjiang Plain.
引文
[1]高涛,谢立安.近50年来中国极端降水趋势与物理成因研究综述[J].地球科学进展,2014,29(5):577-589.
    [2]Wang X, Hou X, Wang Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014[J]. Atmospheric Research, 2017,197:94-104.
    [3]Janssen E, Sriver R L, Wuebbles D J, et al. Seasonal and regional variations in extreme precipitation event frequency using CMIP5[J]. Geophysical Research Letters, 2016,43(10):34-56.
    [4]Skansi M D L M, Brunet M, Sigró J, et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America[J]. Global & Planetary Change, 2013,100(1):295-307.
    [5]Boccolari M, Malmusi S. Changes in temperature and precipitation extremes observed in Modena, Italy[J]. Atmospheric Research, 2013,122(3):16-31.
    [6]Croitoru A E, Chiotoroiu B C, Todorova V I, et al. Changes in precipitation extremes on the Black Sea Western Coast[J]. Global and Planetary Change, 2013,102(5):10-19.
    [7]谢培,顾艳玲,张玉虎,等.1961—2015年新疆降水及干旱特征分析[J].干旱区地理,2017(2):332-339.
    [8]杨金虎,江志红,王鹏祥,等.中国年极端降水事件的时空分布特征[J].气候与环境研究,2008,13(1):75-83.
    [9]顾西辉,张强,孔冬冬,等.中国年和季节极端降水时空特征及极值分布函数上尾部性质[J].地理科学,2017,37(6):929-937.
    [10]赵静.基于虚拟水理论的三江平原农业用水结构调整研究[D].哈尔滨:东北农业大学,2012.
    [11]闫敏华,邓伟,马学慧.大面积开荒扰动下的三江平原近45年气候变化[J].地理学报,2001,56(2):159-170.
    [12]周广胜.气候变化对中国农业生产影响研究展望[J].气象与环境科学,2015,38(1):80-94.
    [13]吕军,孙嗣旸,陈丁江.气候变化对我国农业旱涝灾害的影响[J].农业环境科学学报,2011,30(9):1713-1719.
    [14]王静,杨晓光,李勇,等.气候变化背景下中国农业气候资源变化Ⅵ.黑龙江省三江平原地区降水资源变化特征及其对春玉米生产的可能影响[J].应用生态学报,2011,22(6):1511-1522.
    [15]王秀芬,杨艳昭,尤飞.近30年来黑龙江省气候变化特征分析[J].中国农业气象,2011,32(S1):28-32.
    [16]付强,李铁男,李天霄,等.基于近似熵理论的三江平原月降水量空间复杂性分析[J].水土保持研究,2015(2):113-116.
    [17]李胜利,巩在武,石振彬,等.近50年来山东省极端降水指数变化特征分析[J].水土保持研究,2016,23(4):120-127.
    [18]Rimkus E, Ka?ys J, Bukantis A, et al. Temporal variation of extreme precipitation events in Lithuania[J]. Oceanologia, 2011,53(1):259-277.
    [19]李剑锋,张强,白云岗,等.新疆地区最大连续降水事件时空变化特征[J].地理学报,2012,67(3):312-320.
    [20]佘敦先,夏军,张永勇,等.近50年来淮河流域极端降水的时空变化及统计特征[J].地理学报,2011,66(9):1200-1210.
    [21]Limsakul A, Singhruck P. Long-term trends and variability of total and extreme precipitation in Thailand[J]. Atmospheric Research, 2016,169:301-317.
    [22]Ruml M, Gregori, et al. Observed changes of temperature extremes in Serbia over the period 1961—2010[J]. Atmospheric Research, 2016,183:26-41.
    [23]Shengjie Wang, Mingjun Zhang, Baolong Wang, et al. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973—2011[J]. Quaternary International, 2013,313/314(6):110-117.
    [24]闫慧敏,陈伟娜,杨方兴,等.过去50年内蒙古极端气候事件时空格局特征[J].地理研究,2014,33(1):13-22.
    [25]王钊,彭艳,魏娜.近52a秦岭南北极端温度变化及其与区域增暖的关系[J].干旱气象,2016,34(2):269-275.
    [26]Keggenhoff I, Elizbarashvili M, King L. Recent changes in Georgias temperature means and extremes: Annual and seasonal trends between 1961 and 2010[J]. Weather & Climate Extremes, 2015,8(4):34-45.
    [27]高红燕,蔡新玲,贺皓,等.西安城市化对气温变化趋势的影响[J].地理学报,2009,64(9):1093-1102.
    [28]贺伟,布仁仓,熊在平,等.1961—2005年东北地区气温和降水变化趋势[J].生态学报,2013,33(2):519-531.
    [29]刘聚涛,方少文,冯倩,等.基于Mann-Kendall法的湖泊稳态转换突变分析[J].中国环境科学,2015,35(12):3707-3713.
    [30]刘宇峰,原志华,孙铂.近15年来西安市主要气候要素变化的R/S分析[J].西安文理学院学报:自然科学版,2016,19(1):73-78.
    [31]薛树强,杨元喜.广义反距离加权空间推估法[J].武汉大学学报:信息科学版,2013,38(12):1435-1439.
    [32]曾红伟,李丽娟,张永萱,等.大样本降水空间插值研究:以2009年中国年降水为例[J].地理科学进展,2011,30(7):811-818.
    [33]Huailiang Wang, Zhuhai Shao, Tao Gao, et al. Extreme precipitation event over the Yellow Sea western coast: Isthere a trend[J]. Quaternary International, 2016,441:1-17.
    [34]武文博,游庆龙,王岱.基于均一化降水资料的中国极端降水特征分析[J].自然资源学报,2016(6):1015-1026.