适用于ppb量级NO_2检测的低功率蓝光二极管光声技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photo-acoustic technology applied to ppb level NO_2 detection by using low power blue diode laser
  • 作者:靳华伟 ; 胡仁志 ; 谢品华 ; 陈浩 ; 李治艳 ; 王凤阳 ; 王怡慧 ; 林川
  • 英文作者:Jin Hua-Wei;Hu Ren-Zhi;Xie Pin-Hua;Chen Hao;Li Zhi-Yan;Wang Feng-Yang;Wang Yi-Hui;Lin Chuan;Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;School of Mechanical Engineering, Anhui University of Science and Technology;
  • 关键词:光声光谱 ; 痕量气体探测 ; 低功率蓝光二极管 ; 两级缓冲
  • 英文关键词:photo-acoustic spectroscopy;;trace gas detection;;low power blue diode laser;;two-stage buffer
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室;中国科学技术大学;安徽理工大学机械工程学院;
  • 出版日期:2019-04-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:91644107,61575206,61805257);; 国家重点研发计划(批准号:2017YFC0209401,2017YFC0209403,2017YFC0209902);; 安徽省高校优秀青年人才支持计划项目(2019年靳华伟)资助的课题~~
  • 语种:中文;
  • 页:WLXB201907009
  • 页数:8
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:115-122
摘要
在405 nm处基于低功率蓝光二极管光声技术探测ppb量级NO_2浓度系统,获取了NO_2有效吸收截面,探讨了水蒸气等气体的测量干扰,通过频率扫描拟合得到了1.35 kHz的谐振频率.采用内部抛光的铝制圆柱空腔作为光声谐振腔(内径为8 mm,长为120 mm),系统优化了腔体、窗片和电源等影响因素,分析了降低本底噪声、提高信噪比的方法,噪声信号可降至0.02μV.设计了两级缓冲结构,显著抑制了流量噪声的影响,提高了系统的稳定性.系统的标定梯度曲线经过线性拟合后的斜率为0.016μV/ppb, R~2为0.998,在60 s平均时间下,系统NO_2探测限为3.67 ppb(3σ).为了证实系统的测量结果,将其与二极管激光腔衰荡光谱系统同步对比测量大气NO_2浓度,二者线性拟合后的斜率为0.94±0.009,截距为1.89±0.18,相关系数为0.87,一致性较好.实验结果表明,该系统实现了ppb量级NO_2浓度的低成本在线探测,可用于NO_2浓度外场的实时检测.
        Photo-acoustic technology based on a low power blue diode laser for measuring the ppb level NO_2 is presented in this paper. A low-cost NO_2 measurement system based on traditional photo-acoustic technology is established. The 405 nm blue diode laser with an external modulation is used as a light source. The central wavelength of the laser is 403.56 nm, the half-peak full width is 0.84 nm, and the power is 65.3 mW. The effective absorption cross section of NO_2 is obtained, and the interference of the water vapor and other trace gasisinvestigated. The resonant frequency is tested to be 1.35 kHz by frequency scanning fitting. An internally polished and coated poly tetra fluoroethylene aluminum cylindrical cavity is used as a photo-acoustic resonator(the inner diameter is 8 mm and the length is 120 mm). The influence factors caused by cavity parameters,optical windows and power supply are studied. The system is optimized to reduce background noise and improve signal-to-noise ratio. Then the noise signal is dropped to 0.02 μV. An additional buffer chamber is integrated on the original buffer chamber to form a two-level buffer. The two-stage buffer structure significantly suppresses the effects of airflow noise and improves the system stability. The slope of the calibration curve of the system after linear fitting is 0.016 μV/ppb, and R~2 is 0.998. The NO_2 detection limit of system is 2 ppb(3σ)with an average time of 60 s. To verify the results of the system, a diode laser cavity ring-down spectroscopy system(CRDS system, using a 409 nm the diode laser, with a system detection limit of 6.6 × 10~(–1)) is used to measure ambient NO_2 simultaneouslyon Lake Dong-Pu in western Hefei, Anhui Province, China. During the experiment, the measured NO_2 concentration ranges from 8 to 30 ppb, with an average concentration of 20.8 ppb. The results of two systems have good consistency:alinear fitting slope of 0.94±0.009, an intercept of 1.89±0.18 and acorrelation coefficient of 0.87. The experimental results show that the system can realize the low-cost on-line detection of the ppb level NO_2, and it can also be used for the real-time detection of NO_2 concentration field.
引文
[1]Tapia V,Carbajal L,Vasquez V,Espinoza R,VasquezVelasquez C,Steenland K,Gonzales G F 2018 Revista Peruana De Medicina Experimental Y Salud Publica 35 190
    [2]Vasilkov A P,Joiner J,Oreopoulos L,Gleason J F,Veefkind P,Bucsela E,Celarier E A,Spurr R J D,Platnick S 2009Atmosph.Chem.Phys.9 6389
    [3]Song W,Jia H F,Li Z L,Tang D L 2018 Sci.Total Environ.631-632 688
    [4]Salome C M,Brown N J,Marks G B,Woolcock A J,Johnson G M,Nancarrow P C,Quigley S,Tiong J 1996 Eur.Respir.J.9 910
    [5]Seo H,Jeong R H,Boo J H,Song J,Boo J H 2017 Appl.Sci.Converg.Technol.26 218
    [6]Meena G S,Jadhav D B 2007 Atmósfera 20 271
    [7]United States Environmental Protection Agency Website.http://www.epa.gov[2019-3-8]
    [8]Ryerson T B,Williams E J,Fehsenfeld F C 2000 J.Geophys.Res.105 26447
    [9]Yang Y,Dong F Z,Ni Z B,Pang T,Zeng Z Y,Wu B,Zhang Z R 2014 Chin.Phys.B 23 040703
    [10]Karpf A,Rao G N 2009 Appl.Opt.48 408
    [11]Dong L,Tittel F K,Li C G,Sanchez N P,Wu H P,Zheng CT,Yu Y J,Sampaolo A,Griffin R J 2016 Opt.Exp.24 A528
    [12]Shan C G,Wang W,Liu C,Xu X W,Sun Y W,Tian Y,Liu W Q 2017 Acta Phys.Sin.66 220204(in Chinese)[单昌功,王薇,刘诚,徐兴伟,孙友文,田园,刘文清2017物理学报66220204]
    [13]Hu R Z,Wang D,Xie P H,Chen H,Ling L Y 2016 Acta Opt.Sin.36 312(in Chinese)[胡仁志,王丹,谢品华,陈浩,凌六一2016光学学报36 312]
    [14]Fuchs H,Dube W P,Lerner B M,Wagner N L,Williams EJ,Brown S S 2009 Environ.Sci.Technol.43 7831
    [15]Duan J,Qin M,Ouyang B,Fang W,Li X,Lu K D,Tang K,Liang S X,Meng F H,Hu Z K,Xie P H,Liu W Q,H?sler R2018 Atmosph.Measur.Tech.11 4531
    [16]Ventrillard I,Gorrotxategi-Carbajo P,Romanini D 2017Appl.Phys.B 123 180
    [17]Liu K,Lewicki R,Tittel F K 2016 Sens.Actuat.B:Chemical237 887
    [18]Lewicki R,Doty J H,Curl R F,Tittel F K,Wysocki G 2009Proc.Nati.Acad.Sci.USA 106 12587
    [19]Volkamer R,Baidar S,Campos T L,Coburn S,DiGangi J P,Dix B,Koenig T K,Ortega I,Pierce B R,Reeves M,Sinreich R,Wang S,Zondlo M A,Romashkin P A 2015 Atmosph.Measur.Tech.8 623
    [20]Yu M J,Liu M H,Dong Z R,Sun Y G,Cai H G,Wei F 2015Chin.J.Lasers 42 351(in Chinese)[郁敏捷,刘铭晖,董作人,孙延光,蔡海文,魏芳2015中国激光42 351]
    [21]Lu X,Qin M,Xie P H,Duan J,Fang W,Ling L Y,Shen LL,Liu J G,Liu W Q 2016 Chin.Phys.B 25 024210
    [22]Li A,Xie P H,Liu C,Liu J G,Liu W Q 2007 Chin.Phys.Lett.24 2859
    [23]Thornton J A,Wooldridge P J,Cohen R C 2000 Analyt.Chem.72 528
    [24]D'Ottone L,Campuzano-Jost P,Bauer D,Hynes A J 2001 J.Phys.Chem.A 105 10538
    [25]Yin X K,Dong L,Wu H P,Zheng H D,Ma W G,Zhang L,Yin W B,Jia S T,Tittel F K 2017 Sens.Actuat.B:Chemical247 329
    [26]Yi H M,Liu K,Chen W D,Tan T,Wang L,Gao X M 2011Optics Letters 36 481
    [27]Dong L,Wu H P,Zheng H D,Liu Y Y,Liu X L,Jiang W Z,Zhang L,Ma W G,Ren W,Yin W B,Jia S T,Tittel F K2014 Opt.Lett.39 2479
    [28]Waclawek J P,Moser H,Lendl B 2016 Opt.Express 24 6559
    [29]Sampaolo A,Csutak S,Patimisco P,Giglio M,Menduni G,Passaro V,Tittel F K,Deffenbaugh M,Spagnolo V 2019Sens.Actuat.B:Chemical 282 952
    [30]Wu H P,Dong L,Zheng H D,Liu X L,Yin X K,Ma W G,Zhang L,Yin W B,Jia S T,Tittel F K 2015 Sens.Actuat.B:Chemical 221 666
    [31]DeMille S,DeLaat R H,Tanner R M,Brooks R L,Westwood N P C 2002 Chem.Phys.Lett.366 383
    [32]Zhang J F,Pan S Q,Chen Z M,Yang M,Qiu Y 2017 J.Optoelectron.Laser 28 194(in Chinese)[张建锋,潘孙强,陈哲敏,杨眉,裘越2017光电子激光28 194]
    [33]Pourhashemi A,Farrell R M,Cohen D A,Speck J S,DenBaars S P,Nakamura S 2015 Appl.Phys.Lett.106 160
    [34]Pourhashemi A,Farrell R M,Cohen D A,Becerra D L,DenBaars S P,Nakamura S 2016 Electron.Lett.52 2003
    [35]Mohery M,Abdallah A M,Ali A,Baz S S 2016 Chin.Phys.B25 050701
    [36]Zhou Y,Cao Y,Zhu G D,Liu K,Tan T,Wang L J,Gao XM 2018 Acta Phys.Sin.67 084201(in Chinese)[周彧,曹渊,朱公栋,刘锟,谈图,王利军,高晓明2018物理学报67 084201]
    [37]He Y,Ma Y F,Tong Y,Peng Z F,Yu X 2018 Acta Phys.Sin.67 020701(in Chinese)[何应,马欲飞,佟瑶,彭振芳,于欣2018物理学报67 020701]
    [38]Voigt S,Orphal J,Burrows J P 2002 J.Photochem.Photobiol.A:Chemistry 149 1