城市化对土壤生态环境的影响研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of urbanization on the soil ecological environment:A review
  • 作者:谢天 ; 侯鹰 ; 陈卫 ; 王美娥 ; 吕斯丹 ; 李勖之
  • 英文作者:XIE Tian;HOU Ying;CHEN Weiping;WANG Meie;Lü Sidan;LI Xuzhi;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection;
  • 关键词:城市化 ; 城市土壤 ; 土壤退化 ; 土壤动物 ; 土壤微生物 ; 生态系统服务功能
  • 英文关键词:urbanization;;urban soil;;soil degradation;;soil fauna;;soil microorganisms;;ecosystem service
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院生态环境研究中心城市与区域生态国家重点实验室;中国科学院大学;中国科学院地理科学与资源研究所生态系统网络观测与模拟院重点实验室;环境保护部南京环境科学研究所国家环境保护土壤环境管理与污染控制重点实验室;
  • 出版日期:2019-02-23
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2017YFC0505702);; 中国科学院生态环境研究中心城市与区域国家重点实验室项目基金(SKLURE2013-1-04);中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC034)
  • 语种:中文;
  • 页:STXB201904004
  • 页数:11
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:33-43
摘要
城市土壤是城市生态系统中最重要的组成部分之一,发挥着重要的生态系统服务功能。在全球快速城市化的背景下,城市土壤受到人类活动的强烈干扰,土壤物理、化学性质发生改变,土壤退化与污染日益加重。城市土壤退化导致土壤动物生态特征与行为模式发生变化,城市景观格局与土地利用类型的变化强烈影响了土壤动物的栖息地,为土壤动物的生存与生物多样性带来潜在威胁;另一方面,城市化过程改变了土壤微生物群落组成与功能特征。城市化直接影响了城市土壤维持植物生长、土壤自然消减能力以及碳储存功能等重要的生态系统服务功能。针对城市化过程对土壤生态环境产生的一系列影响,需要采用科学的管理方式,改善土壤理化性质,提高土壤环境质量,保护和恢复土壤生物多样性,从而增强城市土壤的生态系统服务功能。
        Urban soil is one of the most important components in urban ecosystems and plays a prominent role in ecosystem services. With the ongoing rapid urbanization worldwide, urban soils are being extensively disturbed by human activities, which alters their physical and chemical properties and results in soil degradation and severe pollution. The ecological characteristics and behavioral patterns of urban soil fauna has been affected by soil degradation, and changes in urban land use and land cover have disturbed the habitats of these fauna, posing potential threats to their survival and biodiversity. Urbanization has also significantly influenced the assemblage composition and functional characteristics of the soil microbial community. Furthermore, it has a direct impact on the essential ecosystem services of urban soils, including the maintenance of plant survival and growth, natural attenuation capacity, and carbon sequestration. To counter the impact of urbanization on the soil ecological environment, it is necessary to improve soil physical and chemical properties through scientific management, to maintain soil environmental quality, preserve biodiversity, and enhance the ecosystem service function of urban soil.
引文
[1] United Nations, Department of Economic and Social Affairs. World urbanization prospects: The 2018 revision. 2018.
    [2] 国家统计局城市社会经济调查司. 中国统计年鉴2016. 北京: 中国统计出版社, 2016.
    [3] Daily G C, Matson P A, Vitousek P M. Ecosystem services supplied by soil//Daily G C, ed. Nature′s Services: Societal Dependence on Natural Ecosystems. Washington, DC: Island Press, 1997: 113-132.
    [4] 王美娥, 陈卫平, 彭驰. 城市生态风险评价研究进展. 应用生态学报, 2014, 25(3): 911-918.
    [5] McIlwaine R, Doherty R, Cox S F, Cave M. The relationship between historical development and potentially toxic element concentrations in urban soils. Environmental Pollution, 2017, 220: 1036-1049.
    [6] Meuser H. Anthropogenic soils//Meuser H, ed. Contaminated Urban Soils. Dordrecht: Springer, 2010: 121-193.
    [7] 崔晓阳, 方怀龙. 城市绿地土壤及其管理.北京: 中国林业出版社, 2001.
    [8] Sarah P, Zhevelev H M, Oz A. Urban park soil and vegetation: effects of natural and anthropogenic factors. Pedosphere, 2015, 25(3): 392-404.
    [9] 马秀梅. 北京城市不同绿地类型土壤及大气环境研究[D]. 北京: 北京林业大学, 2007.
    [10] 毛齐正. 北京城市绿地植物多样性—土壤关系研究[D]. 北京: 中国科学院研究生院, 2012.
    [11] 杨金玲, 张甘霖, 赵玉国, 赵文君, 何跃, 阮心玲. 城市土壤压实对土壤水分特征的影响——以南京市为例. 土壤学报, 2006, 43(1): 33-38.
    [12] Wang W J, Wang Q, Zhou W, Xiao L, Wang H M, He X Y. Glomalin changes in urban-rural gradients and their possible associations with forest characteristics and soil properties in Harbin City, Northeastern China. Journal of Environmental Management, 2018, 224: 225-234.
    [13] Hagan D, Escobedo F, Toor G, Mayer H, Klein J, Dobbs C. Soil Bulk density and organic matter in urban miami-Dade county, Florida. Soil and Water Science, 2010, SL 327: 1-4.
    [14] Ocean County Soil Conservation District. The Impact of Soil Disturbance During Construction on Bulk Density and Infiltration in Ocean County, New Jersey[R]. Forked River, NJ: Schnabel Engineering Associates, Inc., 2001.
    [15] Chappell C, Johnson A. Influence of pH and bulk density on carbon dioxide efflux in three urban wetland types. Professional Agricultural Workers Journal, 2015, 3(1): 5.
    [16] Set?l? H, Francini G, Allen J A, Jumpponen A, Hui N, Kotze D J. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environmental Pollution, 2017, 231: 451-461.
    [17] 刘文, 陈卫平, 彭驰. 社区尺度绿色基础设施暴雨径流消减模拟研究. 生态学报, 2016, 36(6): 1686-1697.
    [18] Koeser A, Hauer R, Norris K, Krouse R. Factors influencing long-term street tree survival in Milwaukee, WI, USA. Urban Forestry & Urban Greening, 2013, 12(4): 562-568.
    [19] 卢瑛, 龚子同, 张甘霖. 南京城市土壤的特性及其分类的初步研究. 土壤, 2001, (1): 47-51.
    [20] 张甘霖, 吴运金, 龚子同. 城市土壤——城市环境保护的生态屏障. 自然杂志, 2006, 28(4): 205-209.
    [21] Wang M E, Liu R, Chen W P, Peng C, Markert B. Effects of urbanization on heavy metal accumulation in surface soils, Beijing. Journal of Environmental Sciences, 2018, 64: 328-334.
    [22] Peng C, Ouyang Z Y, Wang M E, Chen W P, Li X M, Crittenden J C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environmental Pollution, 2013, 178: 426-432.
    [23] Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh A R, Jaafarzadeh N, Kermani M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 2015, 505: 712-723.
    [24] Li X Z, Wang M E, Chen W P, Uwizeyimana H. Ecological risk assessment of polymetallic sites using weight of evidence approach. Ecotoxicology and Environmental Safety, 2018, 154: 255-262.
    [25] Vogels J J, Verberk W C E P, Lamers L P M, Siepel H. Can changes in soil biochemistry and plant stoichiometry explain loss of animal diversity of heathlands? Biological Conservation, 2017, 212: 432-447.
    [26] Uwizeyimana H, Wang M E, Chen W P, Khan K. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environmental Toxicology and Pharmacology, 2017, 55: 20-29.
    [27] Creamer R E, Rimmer D L, Black H I J. Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term? Soil Use and Management, 2008, 24(1): 37-46.
    [28] Skaldina O, Per?niemi S, Sorvari J. Ants and their nests as indicators for industrial heavy metal contamination. Environmental Pollution, 2018, 240: 574-581.
    [29] Santorufo L, Van Gestel C A M, Rocco A, Maisto G. Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 2012, 161: 57-63.
    [30] Santorufo L, Van Gestel C A M, Maisto G. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils. Geoderma, 2014, 226-227: 47-53.
    [31] Bang C, Faeth S H. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape and Urban Planning, 2011, 103(3/4): 383-399.
    [32] Salminen J, van Gestel C A M, Oksanen J. Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil. Environmental Toxicology and Chemistry, 2001, 20(10): 2287-2295.
    [33] Khan S R, Singh S K, Rastogi N. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil. Environmental Monitoring and Assessment, 2017, 189(4): 195.
    [34] Belskaya E, Gilev A, Belskii E. Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the Middle Ural Copper Smelter, Russia. Environmental Science and Pollution Research, 2017, 24(11): 10768-10777.
    [35] Amossé J, Dózsa-Farkas K, Boros G, Rochat G, Sandoz G, Fournier B, Mitchell E A D, le Bayon R C. Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages. European Journal of Soil Biology, 2016, 73: 46-58.
    [36] Xie T, Wang M E, Chen W P, Uwizeyimana H. Impacts of urbanization and landscape patterns on the earthworm communities in residential areas in Beijing. Science of the Total Environment, 2018, 626: 1261-1269.
    [37] Lee C M, Kwon T S. Response of ground arthropods to effect of urbanization in southern Osaka, Japan. Journal of Asia-Pacific Biodiversity, 2015, 8(4): 343-348.
    [38] 彭涛, 欧阳志云, 文礼章, 郑华. 北京市海淀区土壤节肢动物群落特征. 生态学杂志, 2006, 25(4): 389-394.
    [39] 章家恩, 秦钟, 李庆芳. 不同土地利用方式下土壤动物群落的聚类与排序. 生态学杂志, 2011, 30(12): 2849-2856.
    [40] Smetak K M, Johnson-Maynard J L, Lloyd J E. Earthworm population density and diversity in different-aged urban systems. Applied Soil Ecology, 2007, 37(1/2): 161-168.
    [41] Liu Z F, He C Y, Wu J G. The relationship between habitat loss and fragmentation during urbanization: an empirical evaluation from 16 World Cities. PLoS One, 2016, 11(4): e0154613.
    [42] Leonard R J, McArthur C, Hochuli D F. Habitat complexity does not affect arthropod community composition in roadside greenspaces. Urban Forestry & Urban Greening, 2018, 30(108-114.
    [43] Savage A M, Hackett B, Guénard B, Youngsteadt E K, Dunn R R. Fine-scale heterogeneity across Manhattan′s urban habitat mosaic is associated with variation in ant composition and richness. Insect Conservation and Diversity, 2015, 8(3): 216-228.
    [44] Cilliers S. Social Aspects of Urban Biodiversity - An Overview//Müller N, Werner P, Kelcey J G, eds. Urban Biodiversity and Design. Chichester: Wiley-Blackwell, 2010.
    [45] 侯颖, 周会萍, 张超. 城市化对土壤微生物群落结构的影响. 生态环境学报, 2014, 23(7): 1108-1112.
    [46] Kuramae E E, Yergeau E, Wong C L, Pijl A S, van Veen J A, Kowalchuk G A. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology, 2012, 79(1): 12-24.
    [47] Xu H J, Li S, Su J Q, Nie S A, Gibson V, Li H, Zhu Y G. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology, 2014, 87(1): 182-192.
    [48] Yan B, Li J S, Xiao N W, Qi Y, Fu G, Liu G H, Qiao M P. Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Scientific Reports, 2016, 6: 38811.
    [49] Nsabimana D, Haynes R J, Wallis F M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology, 2004, 26(2): 81-92.
    [50] Hu Y H, Dou X L, Li J Y, Li F. Impervious surfaces alter soil bacterial communities in urban areas: a case study in Beijing, China. Frontiers in Microbiology, 2018, 9: 226.
    [51] 闫冰, 肖能文, 齐月, 付刚, 高晓琦, 刘高慧, 李俊生. 北京城市发展对土壤微生物群落功能多样性的影响. 环境科学研究, 2016, 29(9): 1325-1335.
    [52] 杨元根, Paterson E, Campbell C. 用微生物对单一碳源利用方法探讨重金属在城市土壤中积累的环境效应. 地球化学, 2001, 30(5): 459-464.
    [53] Rai P K, Rai A, Sharma N K, Singh S. Study of soil cyanobacteria along a rural-urban gradient. Algal Research, 2018, 35: 142-151.
    [54] Mafiz A I, Perera L N, He Y S, Zhang W, Xiao S J, Hao W L, Sun S, Zhou K Q, Zhang Y F. Case study on the soil antibiotic resistome in an urban community garden. International Journal of Antimicrobial Agents, 2018, 52(2): 241-250.
    [55] Berglund B, Fick J, Lindgren P E. Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. Environmental Toxicology and Chemistry, 2015, 34(1): 192-196.
    [56] Pei R T, Kim S C, Carlson K H, Pruden A. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 2006, 40(12): 2427-2435.
    [57] Li T X, Meng L L, Herman U, Lu Z M, Crittenden J. A survey of soil enzyme activities along major roads in Beijing: the implications for traffic corridor green space management. International Journal of Environmental Research and Public Health, 2015, 12(10): 12475-12488.
    [58] LI Y, LI H G, LIU F C. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities. Environmental Monitoring and Assessment, 2016, 189(1): 34.
    [59] Potschin-Young M, Haines-Young R, G?rg C, Heink U, Jax K, Schleyer C. Understanding the role of conceptual frameworks: reading the ecosystem service cascade. Ecosystem Services, 2018, 29: 428-440.
    [60] Lehmann A. Technosols and other proposals on urban soils for the WRB (World reference base for soil resources). International Agrophysics, 2006, 20(2): 129-134.
    [61] Haan N L, Hunter M R, Hunter M D. Investigating predictors of plant establishment during roadside restoration. Restoration Ecology, 2012, 20(3): 315-321.
    [62] McGrath D M, Henry J. Getting to the root of tree stress along highways. Acta Horticulturae, 2015, 1085: 109-118.
    [63] Jim C Y, Ng Y Y. Porosity of roadside soil as indicator of edaphic quality for tree planting. Ecological Engineering, 2018, 120: 364-374.
    [64] Lawrence A B, Escobedo F J, Staudhammer C L, Zipperer W. Analyzing growth and mortality in a subtropical urban forest ecosystem. Landscape and Urban Planning, 2012, 104(1): 85-94.
    [65] Somerville P D, May P B, Livesley S J. Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. Journal of Environmental Management, 2018, 227: 365-374.
    [66] US EPA. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Washington, DC, US: Environmental Protection, 1999: 4-17.
    [67] Wang Y, Tang C, Wu J, Liu X, Xu J. Impact of organic matter addition on pH change of paddy soils. Journal of Soils and Sediments, 2013, 13(1): 12-23.
    [68] Gibson D T. Microbial Degradation of Organic Compounds. New York: M. Dekker, 1984.
    [69] Rutgers M, van Wijnen H J, Schouten A J, Mulder C, Kuiten A M P, Brussaard L, Breure A M. A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment, 2012, 415: 39-48.
    [70] Thomsen M, Faber J H, Sorensen P B. Soil ecosystem health and services-Evaluation of ecological indicators susceptible to chemical stressors. Ecological Indicators, 2012, 16: 67-75.
    [71] Wang M E, Faber J H, Chen W P, Li X M, Markert B. Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China. Ecotoxicology and Environmental Safety, 2015, 117: 89-95.
    [72] Xie T, Wang M E, Su C, Chen W P. Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods. Environmental Pollution, 2018, 238: 222-229.
    [73] Ballantyne A P, Alden C B, Miller J B, Tans P P, White J W C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 2012, 488(7409): 70-72.
    [74] Edmondson J L, Davies Z G, McCormack S A, Gaston K J, Leake J R. Land-cover effects on soil organic carbon stocks in a European city. Science of the Total Environment, 2014, 472: 444-453.
    [75] Livesley S J, Ossola A, Threlfall C G, Hahs A K, Williams N S G. Soil carbon and carbon/nitrogen ratio change under tree canopy, tall grass, and turf grass areas of urban green space. Journal of Environmental Quality, 2016, 45(1): 215-223.
    [76] 朱超, 赵淑清, 周德成. 1997—2006年中国城市建成区有机碳储量的估算. 应用生态学报, 2012, 23(5): 1195-1202.
    [77] Liu R, Wang M E, Chen W P. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landscape and Urban Planning, 2018, 169: 241-249.
    [78] 周陶冶. 上海城市绿地土壤有机碳储量的空间格局和驱动机制[D]. 上海: 华东师范大学, 2015.
    [79] 吴志峰, 黄银华, 姜春. 广州市土壤与植被碳蓄积及其空间格局分析. 广州大学学报: 自然科学版, 2014, 13(3): 73-79.
    [80] 陈浩, 吴绍华, 陈东湘, 周生路, 李保杰, 施亚星. 城市土壤封闭对有机碳库影响的时空变化模拟. 生态学报, 2017, 37(8): 2600-2610.
    [81] Churkina G, Brown D G, Keoleian G. Carbon stored in human settlements: the conterminous United States. Global Change Biology, 2010, 16(1): 135-143.
    [82] Edmondson J L, Davies Z G, McHugh N, Gaston K J, Leake J R. Organic carbon hidden in urban ecosystems. Scientific Reports, 2012, 2: 963.
    [83] Bae J, Ryu Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning, 2015, 136: 57-67.
    [84] 吕海亮. 城市植被与土壤碳储量时空变化规律研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2017.
    [85] 罗上华, 毛齐正, 马克明, 邬建国. 北京城市绿地表层土壤碳氮分布特征. 生态学报, 2014, 34(20): 6011-6019.
    [86] Ghosh S, Scharenbroch B C, Ow L F. Soil organic carbon distribution in roadside soils of Singapore. Chemosphere, 2016, 165: 163-172.
    [87] Edmondson J L, O′Sullivan O S, Inger R, Potter J, McHugh N, Gaston K J, Leake J R. Urban tree effects on soil organic carbon. PLoS One, 2014, 9(7): e101872.
    [88] Davies Z G, Edmondson J L, Heinemeyer A, Leake J R, Gaston K J. Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology, 2011, 48(5): 1125-1134.
    [89] Set?l? H M, Francini G, Allen J A, Hui N, Jumpponen A, Kotze D J. Vegetation type and age drive changes in soil properties, nitrogen, and carbon sequestration in urban parks under cold climate. Frontiers in Ecology and Evolution, 2016, 4: 93.
    [90] Trammell T L E, Pouyat R V, Carreiro M M, Yesilonis I. Drivers of soil and tree carbon dynamics in urban residential lawns: a modeling approach. Ecological Applications, 2017, 27(3): 991-1000.
    [91] Tao Y, Li F, Wang R S, Zhao D. Effects of land use and cover change on terrestrial carbon stocks in urbanized areas: a study from Changzhou, China. Journal of Cleaner Production, 2015, 103: 651-657.
    [92] 段保正, 石辉, 魏小芳, 李余, 蒋子银, 陈越浦. 西安市城区表层土壤碳储量与分布特征. 水土保持通报, 2016, 36(6): 293-297.
    [93] Sarzhanov D A, Vasenev V I, Vasenev I I, Sotnikova Y L, Ryzhkov O V, Morin T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia. CATENA, 2017, 158: 131-140.
    [94] Vasenev V I, Stoorvogel J J, Leemans R, Valentini R, Hajiaghayeva R A. Projection of urban expansion and related changes in soil carbon stocks in the Moscow Region. Journal of Cleaner Production, 2018, 170: 902-914.