改性呼吸图法一步制备2D微半球结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-step Fabrication of 2D Micro-hemispheres through the Improved Breath Figure Method
  • 作者:程皓鸽 ; 朱旭 ; 付冬 ; 张馨月 ; 魏浩 ; 马宁
  • 英文作者:Hao-ge Cheng;Xu Zhu;Dong Fu;Xin-yue Zhang;Hao Wei;Ning Ma;College of Material Science and Chemical Engineering, Harbin Engineering University;
  • 关键词:呼吸图法 ; 聚合物相分离 ; 2D微半球
  • 英文关键词:Breath figure;;Polymer phase separation;;2D Micro-hemisphere
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:哈尔滨工程大学材料科学与化学工程学院;
  • 出版日期:2018-12-29 11:26
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号21704022,21875054)资助项目
  • 语种:中文;
  • 页:GFXB201904009
  • 页数:9
  • CN:04
  • ISSN:11-1857/O6
  • 分类号:75-83
摘要
通过引入预相分离过程对传统呼吸图法过程进行改进,改变了PEG在聚合物共混溶液中的初始分布,从而以一步法制备出含有2D微半球结构的聚合物微结构薄膜.通过设计预相分离时间分别为10、20及30 min,PEG的分子量为2000、6000及10000,不同PEG分子的含量配比为1:9、2:8及3:7,以及小分子量PS18000的引入,探讨了制备条件的改变对微结构的形貌及尺寸的影响,并详细分析了条件对于微结构影响的原因.最终设定预相分离时间为10 min、PEG分子配比为3:7及使用小分子PS18000,通过一步法制备含有较多2D微半球结构.该制备方法将为快速、大面积地制备2D微半球结构提供一种新思路.
        Traditional breath figure method was improved via the introduction of polymer pre-phase separation.The morphology and size distribution of microsturctures prepared could be finely tuned by pre-phase separation time, PEG molecular weight, the ratio between different PEG molecules, and blending with small PS molecules.Specifically, compared with 20 and 30 min, the pre-phase separation time of 10 min could yield the most uniform structures; PEG2000 stood out from all PEG molecules tested with molecular weight from 2000 to 10000 and afforded microstructures of the highest compactness and homogeneity; introducing PEG200 the even smaller molecule would enhance the phase separation degree between PS and PEG. Furthermore, ratio variation between PEG200 and PEG2000 suggested that the maximal micro-convexes could be obtained at ratio of 2:8, while a honeycomb morphology was observed at 3:7. Among all the factors investigated, PS molecular weight played a dominant role on topography regulation. PS with lower molecular weight could reduce the molecular chain twisting for all polymer components, which conduced to the polymer phase separation. Addition of PS18000 rather than PS260000 could increase micro-convex amount as well as improve the uniformity of as-prepared structures dramatically. The honeycomb micro-hemisphere arrays were ultimately achieved through one-step breath figure method under the optimized conditions of pre-phase separation time as 10 min, PEG200:PEG2000 ratio as 3:7, and PS18000 participation; in the meantime, three structures including holes, half-holes, and convexes appeared on the substrate. Scrutinize of the underlying mechanism indicated that distribution and assembly of PEG molecules inside or on the surface of water droplets functioned decisively towards the topography of structures formed. This study provides novel insight into highly efficent fabrication of micro-hemispheres arrays.
引文
1Baker R R,Sadovy Y.Nature,1978,276:818-821
    2Brunner R,Sandfuchs O,Pacholski C,Morhard C,Spatz J.Laser Photonics Rev,2012,6(5):641-659
    3Jeong K-H,Kim J,Lee L P.Science,2006,312(5773):557-561
    4Wu L,He J Q,Shang W,Deng T,Gu J,Su H,Liu Q,Zhang W,Zhang D.Adv Opt Mater,2016,4(2):195-224
    5Deng Z,Chen F,Yang Q,Bian H,Du G,Yong J,Shan C,Hou X.Adv Funct Mater,2016,26(12):1995-2001
    6Lee G J,Choi C,Kim D H,Song Y M.Adv Funct Mater,2018,28(24):1705202
    7Huo Y,Fesenmaier C C,Catrysse P B.Opt Express,2010,18(6):5861-5872
    8Chang C,Yang S,Huang L,Chang J.Infrared Phys Technol,2005,48(2):163-173
    9Kunnavakkam M V,Houlihan F M,Schlax M,Liddle J A,Kolodner P,Nalamasu O,Rogers J A.Appl Phys Lett,2003,82(8):1152-1154
    10Gissibl T,Thiele S,Herkommer A,Giessen H.Nat Photon,2016,10(8):554-560
    11Kuang M,Wang L,Song Y.Adv Mater,2014,26(40):6950-6958
    12Srinivasarao M,Collings D,Philips A,Patel S.Science,2001,292(5514):79-83
    13Bai H,Du C,Zhang A,Li L.Angew Chem Int Ed,2013,52(47):12240-12255
    14Sun Wei(孙巍),Shen Liyan(沈利燕),Wang Jiaming(王家鸣),Ji Jian(计剑).Acta Polymerica Sinica(高分子学报),2012,(10):1151-1156
    15Wang C,Mao Y,Wang D,Qu Q,Yang G,Hu X.J Mater Chem,2008,18(6):683-690
    16Wang W,Du C,Wang X,He X,Lin Ji,Li L,Lin S.Angew Chem Int Ed,2014,53(45):12116-12119
    17Galeotti F,Mroz W,Scavia G,Botta C.Org Electron,2012,14(1):212-218
    18Gong J,Xu B,Tao X.ACS Appl Mater Interfaces,2017,9(5):4988-4997
    19Daly Ronan,Sader J E,Boland J J.ACS Nano,2016,10(3):3087-3092
    20Thong A Z,Lim D S W,Ahsan A,Goh G T W,Xu J,Chin J M.Chem Sci,2014,5(4):1375-1382
    21Heng L,Li J,Li M,Tian D,Fan L Z,Jiang L,Tang B Z.Adv Funct Mater,2014,24(46):7241-7248
    22Okaji R,Sakashita S,Tazumi K,Taki K,Nagamine S,Ohshima M.J Mater Sci,2013,48(5):2038-2045
    23Kim J K,Taki K,Nagamine S,Ohshima M.J Appl Polym Sci,2009,111(5):2518-2526
    24Kim J K,Taki K,Nagamine S,Ohshima M.Langmuir,2008,24(16):8898-8903
    25Guo X,Liu L,Zhuang Z,Chen X,Ni M,Li Y,Cui Y,Zhan P,Yuan C,Ge H,Wang Z,Chen Y.Sci Rep,2016,5:15947