含钒页岩搅拌浸出槽结构优化的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Structure Optimization of Stirring Leaching Tank for Vanadium-containing Shale
  • 作者:齐放 ; 张一敏 ; 薛楠 ; 刘涛 ; 黄晶
  • 英文作者:QI Fang;ZHANG Yi-min;XUE Nan-nan;LIU Tao;HUANG Jing;School of Resource and Environmental Engineering,Wuhan University of Science and Technology;State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,Wuhan University of Science and Technology;Hubei Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources,Wuhan University of Science and Technology;Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource,Wuhan University of Science and Technology;College of Resources and Environmental Engineering,Wuhan University of Technology;
  • 关键词:搅拌槽 ; 计算流体动力学 ; 数值模拟 ; 优化 ; 混合
  • 英文关键词:stirring leaching tank;;computational fluid dynamics;;numerical simulation;;optimization;;mixing
  • 中文刊名:METE
  • 英文刊名:Nonferrous Metals(Extractive Metallurgy)
  • 机构:武汉科技大学资源与环境工程学院;武汉科技大学国家环境保护矿冶资源利用与污染控制重点实验室;武汉科技大学钒资源高效利用湖北省协同创新中心;武汉科技大学湖北省页岩钒资源高效清洁利用工程技术研究中心;武汉理工大学资源与环境工程学院;
  • 出版日期:2019-03-12
  • 出版单位:有色金属(冶炼部分)
  • 年:2019
  • 基金:国家自然科学基金资助项目(51474162,51774215,51774216)
  • 语种:中文;
  • 页:METE201903012
  • 页数:7
  • CN:03
  • ISSN:11-1841/TF
  • 分类号:54-60
摘要
基于Fluent流体力学软件,采用标准k-ε湍流模型、欧拉-欧拉多相流模型、多重参考系稳态算法,通过改变搅拌槽内搅拌桨层数、桨叶层间距以及下层桨叶距底高度,对搅拌槽内固液两相流动过程进行优化与改进模拟研究。结果表明,增加搅拌桨层数能明显改善液面流速"死区"范围,整个槽内流体混合更加剧烈;桨叶层间距在0.33 D~0.53 D(D为搅拌槽内径)时,流体流型以合并流为主,能够加强固液之间的接触碰撞和两相间充分混合;下层桨叶距底高度为0.13 D~0.23 D时,可以有效缓解固体颗粒在槽底沉积问题,促进固体颗粒有效分散。
        Based on Fluent fluid dynamics software,standard k-εturbulence model,Euler-Euler multiphase model and multi-reference frame method of steady-state flow were applied to simulate solid-fluid two-phase flow field of stirring leaching tank by changing number of impeller layers,blade layer spacing and distance of impeller from the bottom.The results show that increasing number of impeller layer can obviously improve the "dead zone" range of liquid velocity,and fluid mixing in the whole tank is more intense.When blade spacing is 0.33 D~0.53 D(Dis inner diameter of leaching tank),main fluid flow pattern is confluence flow which the contact collision between solid and liquid can be strengthened and the two phase flow can be fully mixed.When height of lower blade from bottom is 0.13 D~0.23 D,it can effectively alleviate the problem of solid particles deposition at bottom of groove and promote effective dispersion of solid particles.
引文
[1]陈乙崇.搅拌设备设计[M].上海:上海科学技术出版社,1985:1-3.
    [2]GARCIA-RODRIGUEZ S,ALBA-BAENA N,RUDOLPHN M,et al.Dimensional analysis and scaling in mechanical mixing for fabrication of metal matrix nanocomposites[J].Journal of Manufacturing Processes,2012,14(3):388-392.
    [3]GHANEM A,LEMENAND T,VALLE D D,et al.Static mixers:Mechanisms,applications,and characterization methods-A review[J].Chemical Engineering Research&Design,2014,92(2):205-228.
    [4]张一敏.石煤提钒[M].北京:科学出版社,2015:360-362.
    [5]CHUDACEK M W.Solids suspension behavior in profiled bottom and flat bottom mixing tanks[J].Chemical Engineering Science,1985,40(3):385-392.
    [6]LANE G L,SCHWARZ M P,EVANS G M.Predicting gas-liquid flow in a mechanically stirred tank[J].Applied Mathematical Modelling,2002,26(2):223-235.
    [7]苗一,潘家祯,牛国瑞,等.多层桨搅拌槽内的宏观混合特性[J].华东理工大学学报,2006,32(3):122-125.
    [8]逄启寿,王福辉,周雄军.双层桨搅拌槽内流场的数值模拟[J].湿法冶金,2013(6):414-417.
    [9]许卓,赵恒文,郑建坤.桨式搅拌器安装高度对搅拌效果的数值模拟[J].机械制造与自动化,2013,42(2):178-181.
    [10]郑力铭.ANSYS Fluent 15.0流体计算从入门到精通[M].北京:电子工业出版社,2015:33-35.
    [11]李志刚,贾慧芳,王健,等.不同搅拌参数的双层浆搅拌槽三维流场数值模拟[J].有色金属(冶炼部分),2013(7):54-60.
    [12]周国忠,施力田,王英琛.搅拌反应器内计算流体力学模拟技术进展[J].化学工程,2004,32(3):28-32.
    [13]王凯,虞军.搅拌设备[M].北京:化学工业出版社,2003:14-15.
    [14]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2005(5):120-124.
    [15]逄启寿,邓华军.三层桨搅拌槽内三维流场的数值模拟[J].有色金属(冶炼部分),2012(7):40-43.
    [16]刘作华,周政霖,朱俊,等.湿法提钒浸出段搅拌反应器结构的优化[J].化工进展,2015,34(5):1241-1245.
    [17]钟丽,黄雄斌,贾志刚.固-液搅拌槽内颗粒离底悬浮临界转速的CFD模拟[J].北京化工大学学报(自然科学版),2003,30(6):18-22.
    [18]ZWIETERING T N.Suspending of solid particles in liquid by agitators[J].Chemical Engineering Science,1958,8(3):244-253.
    [19]陈卓,周萍,李鹏,等.机械搅拌式锌浸出槽内固液两相流的数值模拟与结构优化[J].中国有色金属学报,2012,22(6):1835-1841.
    [20]钟丽,黄雄斌,贾志刚.用CFD研究搅拌器的功率曲线[J].北京化工大学学报(自然科学版),2003,30(5):4-8.
    [21]刘飞飞,王兵,林飞,等.钨矿强化碱煮搅拌釜的放大设计研究[J].有色金属(冶炼部分),2015(7):50-54.