京津冀一次污染过程的星地同步动态监测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of a Pollution Process in the Beijing-Tianjin-Hebei Region Based on Satellite and Surface Observations
  • 作者:邱昀 ; 李令军 ; 姜磊 ; 王新辉 ; 赵文慧 ; 张立坤 ; 鹿海峰
  • 英文作者:QIU Yun;LI Ling-jun;JIANG Lei;WANG Xin-hui;ZHAO Wen-hui;ZHANG Li-kun;LU Hai-feng;Beijing Municipal Environmental Monitoring Center;
  • 关键词:气象特征 ; 区域传输 ; 卫星遥感 ; 联防联控 ; 京津冀
  • 英文关键词:pollution meteorological characteristics;;regional transmission;;remote sensing;;regional joint mode;;BTH region
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京市环境保护监测中心;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:市委、市政府重点工作及县政府应急项目(Z161100001116013);; 国家重点研发计划项目(2018YFC0706000,2018YFC0706004)
  • 语种:中文;
  • 页:HJKZ201903011
  • 页数:9
  • CN:03
  • ISSN:11-1895/X
  • 分类号:103-111
摘要
京津冀地区大气污染监管逐渐走向区域联防联控模式,卫星遥感可实现大范围实时动态监测,地基监测能够获取精细的网点信息.结合卫星和地基数据,可对区域污染的生消过程进行三维立体的跟踪.本文通过综合分析卫星遥感数据、地面PM_(2.5)浓度数据、激光雷达垂直污染监测数据以及气象数据,分析了2018年3月8~10日京津冀区域污染的形成过程、传输路径、影响范围以及气象因子变化.结果发现,本次污染覆盖范围面积达20万km~2左右,区域内以四级中度污染为主,区域间的污染传输过程非常典型. 3月8~9日北京-保定偏南风频率为50%左右,冀南部分地区到达100%,在持续偏南风作用下,北京-保定一带空气质量由一级优迅速升至四级轻度污染,气溶胶光学厚度高值区由京津冀南部的邯郸-邢台西部山前推至北部燕山前. 3月10日该区域转以弱偏北风为主,湿度明显升高,京津冀南部形成污染辐合,污染重心南移至邯郸-邢台东部;午后,北京转偏东风,空气质量由东向西递次转好.从激光雷达垂直观测结果看,重污染期间北京地区污染层主要出现在1 000 m以下.近地面800 m以下,1 200~1 500 m多次出现双逆温层,且逆温强度高达4~7℃,非常不利于污染物垂直扩散.由此可见,在区域能源消耗和污染排放量依旧很大的背景下,一旦气象条件转差,很容易形成区域性重污染.
        The air pollution control of the Beijing-Tianjin-Hebei region( BTH region) is gradually moving toward regional joint mode.Remote sensing technology can be used to realize real-time dynamic monitoring over a wide range of space and ground-based monitoring can obtain accurate point information. Combining satellite with ground-based data,the formation and dissipation of pollution can be traced in three dimensions. For this paper, we analyzed the formation process, transmission path, coverage area, and the meteorological characteristics of the pollution process over the BTH region during March 8-10,2018,using satellite remote sensing data,surface PM_(2.5) concentration data,meteorological data,and lidar data. The results showed that an area of 200 000 km~2 was affected by this pollution process and that the grade of the pollution reached the fourth level( moderate pollution level). The regional transmission process was very typical in this process. During 8-9 March,the occurrence frequency of the southward wind was about50% in the Beijing-Baoding region and 100% over the southern part of Hebei. With the help of continuous southward wind,the air quality of the Beijing-Baoding area rises from the first level to the fourth level. The high value area of aerosol optical thickness moved from the western part of the Handan-Xingtai region to the front of Yanshan Mountain. On 10 March,the weak north wind affected the region and the humidity increased obviously. A pollution convergence formed in the southern part of the BTH region. The center of pollution moved southward to the east part of the Handan-Xingtai Region. In the afternoon,with the help of the eastern wind,the air quality of Beijing got better from East to West. The vertical lidar observation results showed the pollution layer above Beijing was mainly below 1 000 m. There were two inversion layers below 800 m and 1 200-1 500 m,respectively. The inversion temperature was as high as 4-7℃,which is unfavorable for vertical diffusion of pollutants. Thus,under the high intensity of regional energy consumption and pollution emissions background,the regional heavy pollution form easily once the weather conditions are bad.
引文
[1]国家统计局能源统计司.中国能源统计年鉴2015[M].北京:中国统计出版社,2015.Department of Energy Statistics,National Bureau of Statistics.China energy statistical yearbook 2015[M].Beijing:China Statistics Publishing House,2015.
    [2]国家统计局,环境保护部.中国环境统计年鉴2013[M].北京:中国统计出版社,2013.National Bureau of Statistics,Ministry of Environmental Protection.China statistical yearbook on environment 2013[M].Beijing:China Statistics Press,2013.
    [3]河北省人民政府.河北经济年鉴2012[M].北京:中国统计出版社,2012.Hebei People's Government.Hebei economic yearbook 2012[M].Beijing:China Statistics Publishing House,2012.
    [4]高健,王淑兰,柴发合.我国大气灰霾污染特征及污染控制建议---以2013年1月大气灰霾污染过程为例[J].环境与可持续发展,2013,38(4):14-16.Gao J,Wang S L,Chai F H.Study on the pollution characteristic and the control suggestions about atmospheric haze in China[J].Environment and Sustainable Development,2013,38(4):14-16.
    [5]刘庆阳,刘艳菊,杨峥,等.北京城郊冬季一次大气重污染过程颗粒物的污染特征[J].环境科学学报,2014,34(1):12-18.Liu Q Y,Liu Y J,Yang Z,et al.Daily variations of chemical properties in airborne particulate matter during a high pollution winter episode in Beijing[J].Acta Scientiae Circumstantiae,2014,34(1):12-18.
    [6]高愈霄,霍晓芹,闫慧,等.京津冀区域大气重污染过程特征初步分析[J].中国环境监测,2016,32(6):26-35.Gao Y X,Huo X Q,Yan H,et al.Preliminary analysis on the characteristics of heavy air pollution events in Beijing-TianjinHebei region[J].Environmental Monitoring in China,2016,32(6):26-35.
    [7]阎育梅.京津冀及周边地区大气污染防治协作机制建设[J].中国机构改革与管理,2018,(1):51-53.
    [8]Li W J,Zhang D Z,Shao L Y,et al.Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain[J].Atmospheric Chemistry and Physics,2011,11(22):11733-11744.
    [9]李令军,王占山,张大伟,等.2013~2014年北京大气重污染特征研究[J].中国环境科学,2016,36(1):27-35.Li L J,Wang Z S,Zhang D W,et al.Analysis of heavy air pollution episodes in Beijing during 2013~2014[J].China Environmental Science,2016,36(1):27-35.
    [10]李令军,王英,李金香,等.2000~2010北京大气重污染研究[J].中国环境科学,2012,32(1):23-30.Li L J,Wang Y,Li J X,et al.The analysis of heavy air pollution in Beijing during 2000~2010[J].China Environmental Science,2012,32(1):23-30.
    [11]孙峰,张大伟,孙瑞雯,等.北京地区冬季典型PM2.5重污染案例分析[J].中国环境监测,2014,30(6):1-12.Sun F,Zhang D W,Sun R W,et al.Typical heavy pollution episode analysis on PM2.5in winter of Beijing[J].Environmental Monitoring in China,2014,30(6):1-12.
    [12]廖晓农,张小玲,王迎春,等.北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析[J].环境科学,2014,35(6):2031-2044.Liao X N,Zhang X L,Wang Y C,et al.Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing[J].Environmental Science,2014,35(6):2031-2044.
    [13]李令军,王英,李金香,等.北京市冬春季大气颗粒物的粒径分布及消光作用[J].环境科学研究,2008,21(2):90-94.Li L J,Wang Y,Li J X,et al.The characteristic of atmospheric particle size distribution and their light extinction effect in Beijing during winter and spring time[J].Research of Environmental Sciences,2008,21(2):90-94.
    [14]毛节泰,王强,赵柏林.大气透明度光谱和浑浊度的观测[J].气象学报,1983,41(3):322-332.Mao J T,Wang Q,Zhao B L.The observation of the atmospheric transparency spectrum and the turbidity[J].Acta Meteorologica Sinica,1983,41(3):322-332.
    [15]韩永清,孙兴池,李静,等.雾霾天气个例气象条件对比分析[J].气象科技,2017,45(1):172-178.Han Y Q,Sun X C,Li J,et al.Comparative analysis of meteorological conditions for fog and haze cases[J].Meteorological Science and Technology,2017,45(1):172-178.
    [16]谭衢霖,邵芸.遥感技术在环境污染监测中的应用[J].遥感技术与应用,2000,15(4):246-251.Tan Q L,Shao Y.Application of remote sensing technology to environmental pollution monitoring[J].Remote Sensing Technology and Application,2000,15(4):246-251.
    [17]King M D,Kaufman Y J,Menzel W P,et al.Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer(MODIS)[J].IEEETransactions on Geoscience and Remote Sensing,1992,30(1):2-27.
    [18]Kaufman Y J,Wald A E,Remer L A,et al.The MODIS 2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1286-1298.
    [19]Kaufman Y J,TanréD,Gordon H R,et al.Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect[J].Journal of Geophysical Research,1997,102(D14):16815-16830.
    [20]李成才,毛节泰,刘启汉,等.MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J].中国科学(D辑:地球科学),2005,35(S1):177-186.Li C C,Mao J T,Liu Q H,et al.Application of MODIS satellite products to the air pollution research in Beijing[J].Science in China(Ser.D:Terrae),2005,48(S2):209-219.
    [21]汤玉明,邓孺孺,刘永明,等.大气气溶胶遥感反演研究综述[J].遥感技术与应用,2018,33(1):25-34.Tang Y M,Deng R R,Liu Y M,et al.Research review of remote sensing for atmospheric aerosol retrieval[J].Remote Sensing Technology and Application,2018,33(1):25-34.
    [22]王新辉,苏林,陶明辉,等.基于星地同步观测的华北平原中部背景地区冬季霾污染过程[J].中国环境科学,2016,36(6):1610-1620.Wang X H,Su L,Tao M H,et al.A study of winter haze pollution over a rural area of central Northern China Plain based on satellite and surface observations[J].China Environmental Science,2016,36(6):1610-1620.
    [23]陈烨鑫,朱彬,尹聪,等.基于卫星遥感和地面观测资料分析苏皖两省一次空气污染过程[J].中国环境科学,2014,34(4):827-836.Chen Y X,Zhu B,Yin C,et al.A continuous air pollution event in Jiangsu and Anhui provinces based on satellite remote sensing and field observations[J].China Environmental Science,2014,34(4):827-836.
    [24]李倩,李令军,张大伟,等.北京大气PM2.5遥感监测业务化方法探讨[J].环境科学研究,2016,29(10):1417-1425.Li Q,Li L J,Zhang D W,et al.Routine operational algorithm for remote sensing of atmospheric PM2.5in Beijing[J].Research of Environmental Sciences,2016,29(10):1417-1425.
    [25]李倩,李成才,王烨芳,等.利用激光雷达和卫星遥感获得城市地面大气悬浮颗粒物浓度分布[J].北京大学学报(自然科学版),2013,49(4):673-682.Li Q,Li C C,Wang Y F,et al.Retrieval on mass concentration of urban surface suspended paticulate matter with LIDAR and satellite remotesensing[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2013,49(4):673-682.
    [26]盛裴轩,毛节泰,李建国,等.大气物理学[M].(第二版).北京:北京大学出版社,2013.
    [27]苏城林,苏林,陈良富,等.NPP VIIRS数据反演气溶胶光学厚度[J].遥感学报,2015,19(6):977-982.Su C L,Su L,Chen L F,et al.Retrieval of aerosol optical depth using NPP VIIRS data[J].Journal of Remote Sensing,2015,19(6):977-982.
    [28]Levy R C,Remer L A,Kleidman R G,et al.Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J].Atmospheric Chemistry and Physics,2010,10(21):10399-10420.
    [29]Tao M H,Chen L F,Wang Z F,et al.A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations[J].Atmospheric Environment,2014,82:183-192.
    [30]张世乔,江洪,王祎鑫,等.京津唐地区PM2.5遥感估算与区域传输[J].遥感信息,2017,32(4):11-23.Zhang S Q,Jiang H,Wang Y X,et al.Ground-level PM2.5estimation and regional transport in Beijing-Tianjin-Tangshan region using satellite remote sensing technique[J].Remote Sensing Information,2017,32(4):11-23.
    [31]张璐.基于国产遥感卫星数据的北京市气溶胶光学厚度反演研究[D].上海:华东师范大学,2016.Zhang L.Retrieval of aerosol optical depth using domestic remote sensing data over Beijing[D].Shanghai:East China Normal University,2016.
    [32]亢红霞,那晓东,臧淑英.基于卫星遥感数据(AOD)估算PM2.5的研究进展[J].环境科学与管理,2016,41(2):30-34.Kang H X,Na X D,Zang S Y.Advance in ground-level PM2.5prediction using remote sensing data(AOD)[J].Environmental Science and Management,2016,41(2):30-34.
    [33]刘安伟.基于高光谱遥感影像的AOD反演[J].矿山测量,2017,45(4):38-43.Liu A W.AOD inversion based on hyperspectral remote sensing image[J].Mine Surveying,2017,45(4):38-43.
    [34]曾令建.基于HJ-1卫星的气溶胶光学厚度反演[D].南京:南京信息工程大学,2011.Zeng L J.Retrieval of aerosol optical depth based on HJ-1satellite[D].Nanjing:Nanjing University of Information Science&Technology,2011.
    [35]王占山,张大伟,李云婷,等.2014年春节期间北京市空气质量分析[J].环境科学学报,2015,35(2):371-378.Wang Z S,Zhang D W,Li Y T,et al.Analysis of air quality in Beijing city during Spring Festival period of 2014[J].Acta Scientiae Circumstantiae,2015,35(2):371-378.
    [36]石琳琳,李令军,李倩,等.2016年北京市春节大气颗粒物污染特征激光雷达监测分析[J].环境科学,2017,38(10):4092-4099.Shi L L,Li L J,Li Q,et al.Analysis of atmospheric particulate matter pollution characteristics by LIDAR in Beijing during Spring Festival,2016[J].Environmental Science,2017,38(10):4092-4099.
    [37]韩国气象局.天气图[DB/OL].http://web.kma.go.kr/chn/weather/images/analysischart.jsp,2018-03-08.
    [38]刘凡,谭钦文,江霞,等.成都市冬季相对湿度对颗粒物浓度和大气能见度的影响[J].环境科学,2018,39(4):1466-1472.Liu F,Tan Q W,Jiang X,et al.Effect of relative humidity on particulate matter concentration and visibility during winter in Chengdu[J].Environmental Science,2018,39(4):1466-1472.
    [39]Quan J N,Liu Q,Li X,et al.Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events[J].Atmospheric Environment,2015,122:306-312.