一种基于并联6自由度结构的电动轮足机器人
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Electric Wheel-Foot Robot Based on Parallel 6-DOF Structure
  • 作者:刘冬琛 ; 王军政 ; 汪首坤 ; 沈伟 ; 彭辉
  • 英文作者:LIU Dongchen;WANG Junzheng;WANG Shoukun;SHEN Wei;PENG Hui;Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology;Key Laboratory of Servo Motion System Drive and Control, Ministry of Industry and Information Technology, School of Automation,Beijing Institute of Technology;
  • 关键词:地面移动机器人 ; 轮足复合运动 ; 并联6自由度结构 ; 四足机器人
  • 英文关键词:ground mobile robot;;wheel-foot compound;;parallel 6-DOF structure;;quadruped robot
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:北京理工大学自动化学院复杂系统智能控制与决策国家重点实验室;北京理工大学自动化学院伺服运动系统驱动与控制工业和信息化部重点实验室;
  • 出版日期:2018-09-04 14:21
  • 出版单位:机器人
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(61773060)
  • 语种:中文;
  • 页:JQRR201901008
  • 页数:11
  • CN:01
  • ISSN:21-1137/TP
  • 分类号:67-76+84
摘要
针对现有基于串联式机械腿结构的四足机器人无法同时满足承载能力大、环境适应性强、运动速度快等要求的问题,提出了一种基于并联6自由度结构的电动轮足机器人结构原理,集成了轮式运动和足式运动各自的优势.在对机器人并联式轮腿进行运动学和动力学分析基础上,建立了单腿动力学模型和机器人整体运动学模型,提出了机器人机身姿态调整算法,有效提高了机器人运动过程中姿态的平稳性.仿真与实验验证了所提出的轮足复合式机器人的可行性和轮式运动时机器人机身姿态调整策略的有效性.
        Since the existing quadruped robots based on tandem mechanical leg structure can't meet the requirements of large carrying capacity, strong environmental adaptability and fast moving speed simultaneously, a structural principle of a wheel-foot robot based on parallel 6-DOF(degree of freedom) structure is proposed which integrates the advantages of wheel and foot motion. Based on the kinematics and dynamics analysis of the parallel wheel-leg, a dynamic model of a single leg and a kinematic model of the robot are established. A posture adjustment algorithm of the robot body is proposed, which improves the posture stability of the robot in movement effectively. Simulation and experimental results show the feasibility of the proposed wheel-foot robot and the effectiveness of the robot posture adjustment strategy in wheeled motion.
引文
[1]柳倩,桂建军,杨小薇,等.工业机器人传感控制技术研究现状及发展态势——基于专利文献计量分析视角[J].机器人,2016,38(5):612-620.Liu Q, Gui J J, Yang X W, et al. Research status and develop-ment trends for sensing and control technologies of industrialrobot from the viewpoint of patent analysis[J]. Robot, 2016,38(5):612-620.
    [2]王天然.机器人技术的发展[J].机器人, 2017, 39(4):385-386.Wang T R. Development of robotics[J]. Robot, 2017, 39(4):385-386.
    [3]张秀丽.四足机器人节律运动及环境适应性的生物控制研究[D].北京:清华大学,2004.Zhang X L. Biological-inspired rhythmic motion&environ-mental adaptability for quadruped robot[D]. Beijing:TsinghuaUniversity, 2004.
    [4]陈淑艳,陈文家.履带式移动机器人研究综述[J].机电工程,2007,24(12):109-112.Chen S Y, Chen W J. Review of tracked mobile robots[J].Mechanical&Electrical Engineering Magazine, 2007, 24(12):109-112.
    [5]陆冬平.仿生四足-轮复合移动机构设计与多运动模式步态规划研究[D].合肥:中国科学技术大学,2015.Lu D P. Research on the design and gait planning of multi-locomotion modes of a bionic leg-wheel hybrid mechanisms[D]. Hefei:University of Science and Technology of China,2015.
    [6] Hirose S, Fukuda Y, Kikuchi H. The gait control system of aquadruped walking vehicle[J]. Advanced Robotics, 1986, 1(4):289-323.
    [7]刘飞.四足机器人步态规划与平衡控制研究[D].合肥:中国科学技术大学,2010.Liu F. Research about gait planning and balance control ofquadruped robot[D]. Hefei:University of Science and Technol-ogy of China, 2010.
    [8] Kuhlman M J, Hays J, Sofge D, et al. Stabilizing task-based om-nidirectional quadruped locomotion with virtual model control[C]//IEEE International Conference on Robotics and Automa-tion. Piscataway, USA:IEEE, 2015:5171-5176.
    [9] Koo I M, Trong T D, Lee Y H, et al. Biologically inspiredgait transition control for a quadruped walking robot[J]. Au-tonomous Robots, 2015, 39(2):169-182.
    [10] Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ–A hydraulically and electrically actuated quadruped robot[J].Proceedings of the Institution of Mechanical Engineers, PartI:Journal of Systems and Control Engineering, 2011, 225(6):831-849.
    [11] Focchi M, del Prete A, Havoutis I, et al. High-slope terrain loco-motion for torque-controlled quadruped robots[J]. AutonomousRobots, 2017, 41(1):259-272.
    [12] Guccione S, Muscato G. The wheeleg robot[J]. IEEE Robotics&Automation Magazine, 2003, 10(4):33-43。
    [13] Tadakuma K, Tadakuma R, Maruyama A, et al. Mechanical de-sign of the wheel-leg hybrid mobile robot to realize a largewheel diameter[C]//IEEE/RSJ International Conference on In-telligent Robots and Systems. Piscataway, USA:IEEE, 2010:3358-3365.
    [14] Grand C, Benamar F, Plumet F. Motion kinematics analysisof wheeled-legged rover over 3D surface with posture adapta-tion[J]. Mechanism and Machine Theory, 2010, 45(3):477-495.
    [15] Wang P F, Bo H, Sun L N. Walking research on multi-motionmode quadruped bionic robot based on moving ZMP[C]//IEEEInternational Conference Mechatronics and Automation. Piscat-away, USA:IEEE, 2005:1935-1940.
    [16] Spong M W, Vidyasagar M. Robot dynamics and control[M].Hoboken, USA:Wiley, 2004.
    [17]黄博,赵建文,孙立宁.基于静平衡的四足机器人直行与楼梯爬越步态[J].机器人,2010,32(2):226-232.Huang B, Zhao J W, Sun L N. Straight walking and stair climb-ing gait of quadruped robot based on static balance[J]. Robot,2010, 32(2):226-232.
    [18] Hao R J, Wang J Z, Zhao J B, et al. Adaptive robust controlfor electrical cylinder with compensation using modified Lu-Gre model[J]. Journal of Beijing Institute of Technology, 2014,23(3):358-367.
    [19] Hao R J, Wang J Z, Zhao J B, et al. Observer-based robust con-trol of 6-DOF parallel electrical manipulator with fast frictionestimation[J]. IEEE Transactions on Automation Science&En-gineering, 2016, 13(3):1399-1408.