三峡库区草堂河流域土壤pH空间分布预测制图
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution Prediction and Mapping of Soil pH of Caotang River Basin in the Three Gorges Reservoir Area
  • 作者:马冉 ; 刘洪斌 ; 武伟
  • 英文作者:MA Ran;LIU Hong-bin;WU Wei;College of Resources and Environment, Southwest University;Chongqing Key Laboratory of Digital Agriculture;College of Computer and Information Science, Southwest University;
  • 关键词:环境因子 ; 随机森林 ; 土壤pH ; 空间分布预测
  • 英文关键词:environmental factors;;RF model;;soil pH;;prediction of spatial distribution
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:西南大学资源环境学院;重庆市数字农业重点实验室;西南大学计算机与信息科学学院;
  • 出版日期:2019-03-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:v.28
  • 基金:国家科技支撑计划课题(2008BADA4B10);; 中央高校基本科研业务费专项(XDJK2016D041)
  • 语种:中文;
  • 页:CJLY201903020
  • 页数:9
  • CN:03
  • ISSN:42-1320/X
  • 分类号:201-209
摘要
以三峡库区草堂河流域为研究区,利用网格布点,共采集102个土壤样点,分析测定土壤的pH值,结合成土母质和地形等10个环境因子,以样点总数的85%作为训练集进行预测模型构建,15%作为验证集检验模型精度,利用随机森林(Random Forest, RF)模型对研究区土壤pH进行空间分布预测并制图。结果表明:土壤pH与谷深、坡长呈显著正相关,与海拔、距河网垂直距离、坡高呈显著负相关。三叠系大冶组灰岩发育的土壤pH值高于三叠系须家河组石英砂岩发育的土壤pH值。基于环境因子的RF预测模型,平均绝对误差(MAE)为0.47、均方根误差(RMSE)为0.59、决定系数(R~2)为0.85,能解释研究区土壤pH值85%的空间变异。对土壤pH值产生主要影响的环境因子为成土母质和海拔。可见,基于环境因子的RF预测模型,预测精度高,可以作为土壤pH空间分布预测的有效方法,能为流域尺度下其他土壤属性的空间分布预测提供依据和借鉴。
        A total of 102 samples were collected from the topsoil at a depth of 20 cm to predict and map the spatial distribution of soil pH over the Caotang River Basin in the Three Gorges Reservoir Area. The samples were divided into calibration(85%) and validation(15%) sets. Random Forest(RF) method was applied to predict the spatial distribution of soil pH based on parent materials and terrain indicators(Elevation, Slope, Aspect, Slope Height, Valley depth, Topographical wetness index, Vertical Distance to Channel Network, Multi-resolution index of valley bottom flatness, Slope Length). The major influencing environmental factors on soil pH spatial variability were investigated by the RF model. The results showed that soil pH was significantly positively correlated to Valley depth and Slope Length, while significantly negatively correlated to Elevation, Vertical Distance to Channel Network and Slope Height. Soils developed from Limestone of Triassic Daye formation had higher values of pH than that developed from Sandstone of Triassic Xujiahe Formation. The RF model had a good performance with the mean absolute error(MAE), the root mean square error(RMSE) and the determination coefficient(R~2) of 0.47, 0.59 and 0.85, respectively. The model could explain 85% variation of soil pH in the study area. The major factors to soil pH variations were soil parent material and elevation. Therefore, RF model can serve as an effective method to predict the spatial distribution of soil pH, and can provide the basis and reference for other soil properties prediction at watershed scale.
引文
[1] 华孟,王坚. 土壤物理学[M]. 北京: 北京农业大学出版社, 1992:214-243.HUA M, WANG J. Soil physics[M]. Beijing: China Agricultural University Press, 1992:214-243.
    [2] 蒋勇军. 流域尺度的岩溶区土壤pH值空间变异研究——以云南小江流域为例[J]. 中国岩溶,2009,28(1): 80-86.JIANG Y J. Spatial variability of karst soil pH on drainage basin scale: A case in Xiaojiang basin, Yunnan[J]. Carsologica Sinica, 2009, 28(1): 80-86.
    [3] 张维,李启权,王昌全,等. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例[J]. 长江流域资源与环境, 2015, 24(7): 1192-1199.ZHANG W, LI Q Q, WANG C Q, et al. Spatial variability of soil pH and its influence factors at a county scale in hilly area of Mid-Sichuan basin: A case study from Renshou in Sichuan[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7): 1192-1199.
    [4] 熊毅,李庆逵. 中国土壤[M]. 北京: 科学出版社, 1990: 433-443.XIONG Y, LI Q K. Chinese soil[M]. Beijing: Science Press, 1990: 433-443.
    [5] FILIPPI P, CATTLE S R, BISHOP T F A, et al. Digital soil monitoring of top- and sub-soil pH with bivariate linear mixed models[J]. Geoderma, 2018, 322: 149-162.
    [6] 杨忠芳,陈岳龙,钱鑂,等. 土壤pH对镉存在形态影响的模拟实验研究[J]. 地学前缘, 2005, 12(1): 252-260.YANG Z F, CHEN Y L, QIAN X, et al. A study of the effect of soil pH on chemical species of cadmium by simulated experiments[J]. Earth Science Frontiers, 2005, 12(1): 252-260.
    [7] 陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002: 46-53.CHEN H M. Behavior and environmental quality of chemical substances in soil[M]. Beijing: Science Press, 2002: 46-53.
    [8] SUMFLETH K, DUTTMANN R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators[J]. Ecological Indicators, 2008, 8(5):485-501.
    [9] 庄卫民. 土壤调查与制图技术:理论、方法与应用[M]. 北京: 农业科技出版社, 1995.ZHUANG W M. Soil survey and mapping technology: Theory, method and application[M]. Beijing: China Agricultural Science and Technology Press, 1995.
    [10] 朱阿兴,李宝林,杨琳,等. 基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J]. 土壤学报, 2005, 42(5): 142-149.ZHU A X, LI B L, YANG L, et al. Predictive soil mapping based on a GIS, expert knowledge, and fuzzy logic framework and its application prospects in China[J]. Acta Pedologica Sinica, 2005, 42(5): 142-149.
    [11] 孙福军,雷秋良,刘颖,等. 数字土壤制图技术研究进展与展望[J]. 土壤通报, 2011, 42(6): 1502-1507.SUN F J, LEI Q L, LIU Y, et al. The progress and prospect of digital soil mapping research[J]. Chinese Journal of Soil Science, 2011, 42(6): 1502-1507.
    [12] ZHU A X, FENG Q, MOORE A, et al. Prediction of soil properties using fuzzy membership values[J]. Geoderma, 2010, 158(3-4):199-206.
    [13] 孙孝林,赵玉国,刘峰,等. 数字土壤制图及其研究进展[J]. 土壤通报, 2013, 44(3): 752-759.SUN X L, ZHAO Y G, LIU F, et al. Digital soil mapping and advance in research[J]. Chinese Journal of Soil Science, 2013, 44(3): 752-759.
    [14] ZERAATPISHEH M, AYOUBI S, JAFARI A, et al. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran[J]. Geomorphology, 2017(285): 186-204.
    [15] WANG J, CUI L, GAO W, et al. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy[J]. Geoderma, 2014, 216(4): 1-9.
    [16] 王库. 地理权重回归在土壤pH空间预测中的应用[J]. 湖南农业大学学报(自然科学版), 2013, 39(1): 73-79.WANG K. Application of geographically weighted regression on the spatial prediction of soil pH[J]. Journal of Hunan Agricultural University (Natural Sciences), 2013, 39(1): 73-79.
    [17] 董敏,王昌全,李冰,等. 基于GARBF神经网络的土壤有效锌空间插值方法研究[J]. 土壤学报, 2010, 47(1): 42-50.DONG M, WANG C Q, LI B, et al. Study on soil available zinc with GARBF Neural Network based spatial interpolation method[J]. Acta Pedologica Sinica, 2010, 47(1): 42-50.
    [18] 徐丽华. 土壤养分预测方法的比较研究——以三峡库区王家沟小流域为例[D]. 西南大学, 2012.XU L H. A comparative study of soil nutrient prediction methods:A case study in Wangjiagou small watershed of Three Gorges Reservoir Area[D]. Southwest University, 2012.
    [19] LIAW A, M W. Classification and regression by random forest[J]. R News, 2002, 23(23): 18-22.
    [20] LI A D, GUO P T, WU W, et al. Impacts of terrain attributes and human activities on soil texture class variations in hilly areas, south-west China[J]. Environmental Monitoring & Assessment, 2017, 189(6):281.
    [21] BREIMAN L. (2001). Random forests[J]. Machine Learning, 2001,45(1): 5-32.
    [22] 王茵茵,齐雁冰,陈洋,等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报, 2016, 53(2): 342-354. WANG Y Y, QI Y B, CHEN Y, et al. Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J]. Acta Pedologica Sinica, 2016, 53(2): 342-354.
    [23] 郭澎涛,李茂芬,罗微,等. 基于多源环境变量和随机森林的橡胶园土壤全氮含量预测[J]. 农业工程学报, 2015, 31(5): 194-200.GUO P T, LI M F, LUO W, et al. Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 194-200.
    [24] RAD M R P, AKBARIMOGHADDAM A. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)[J]. Catena, 2018: 160.
    [25] LIEB M, GLASER B, HUWE B. Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and random forest models[J]. Geoderma, 2012, 170(3): 70-79.
    [26] VOS C, DON A, PRIETZ R, et al. Field-based soil-texture estimates could replace laboratory analysis[J]. Geoderma, 2016, 267: 215-219.
    [27] FLORINSKY I V, EILERS R G, MANNING G R, et al. Prediction of soil properties by digital terrain modelling[J]. Environmental Modelling & Software, 2002, 17(3): 295-311.
    [28] GUO P, WU W, LIU H, et al. Effects of land use and topographical attributes on soil properties in an agricultural landscape[J]. Soil Research, 2011, 49(7): 606.
    [29] 全国农业技术推广服务中心. 土壤分析技术规范.第二版[M]. 2. 北京: 中国农业出版社, 2006: 73-75.National Agricultural Technology Extension and Service Center. Technical specification for soil analysis[M]. Beijing: Chinese Agricultural Publishing House, 2006: 73-75.
    [30] MCKENZIE N J, RYAN P J. Spatial prediction of soil properties using environmental correlation[J]. Geoderma, 1999, 89(1): 67-94.
    [31] CONRAD O, BECHTEL B, BOCK M, et al. System for automated geoscientific analyses (SAGA) v. 2.1.4[J]. Geoscientific Model Development, 2015, 8(7): 1991-2007.
    [32] 邓欧平,周稀,黄萍萍,等. 川中紫色丘区土壤养分空间分异与地形因子相关性研究[J]. 资源科学, 2013, 35(12): 2434-2443.DENG O P, ZHOU X, HUANG P P, et al. Correlations between spatial variability of soil nutrients and topographic factors in the purple hilly region of Sichuan[J]. Resources Science, 2013, 35(12): 2434-2443.
    [33] 丁元林,孔丹莉,毛宗福. 多重线性回归分析中的常用共线性诊断方法[J]. 数理医药学杂志, 2004, 17(4): 299-300.DING Y L, KONG D L, MAO Z F. Common collinearity diagnostic methods in multiple linear regression analysis[J]. Journal of Mathematical Medicine, 2004, 17(4): 299-300.
    [34] WU W, YAN F, ZHENGYIN W, et al. Assessing effects of digital elevation model resolution on soil-landscape correlations in a hilly area[J]. Agriculture Ecosystems & Environment, 2008, 126(3): 209-216.
    [35] 范立新. 回归分析中多重共线性诊断方法[J]. 环境卫生学杂志, 1994(1): 34-37.FAN L X. Multiple collinear diagnosis in regression analysis[J]. Journal of Environmental Hygiene, 1994(1):34-37.
    [36] TAN X, LIU H B, LI M F, et al. Prediction of soil properties by using geographically weighted regression at a regional scale[J]. Soil Research, 2017, 55(4).
    [37] 许安定,杜国伟,刘洪斌. 基于CART模型的烤烟评吸质量影响因子研究[J]. 西南农业学报, 2013, 26(4): 1356-1361.XU D A, DU G W, LIU H B. Investigation of factors controlling smoking quality of flue-cured tobacco using cart models[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1356-1361.
    [38] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38.FANG K N, WU J B, ZHU J P, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38.
    [39] 李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4): 1190-1197.LI X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology, 2013, 50(4): 1190-1197.
    [40] 张素梅, 王宗明, 张柏,等. 利用地形和遥感数据预测土壤养分空间分布[J]. 农业工程学报, 2010, 26(5):188-194.ZHANG S M, WANG Z M, ZHANG B, et al. Prediction of spatial distribution of soil nutrients using terrainattributes and remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5):188-194.
    [41] 郭澎涛. 丘陵山地预测性土壤制图研究——以地形因子为辅助变量[D]. 西南大学, 2009.GUO P T. Predictive soil mapping in a hilly area using terrain attrebutes[D]. Southwest Univeristy, 2009.
    [42] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 66-157.HUANG C Y. Soil science[M]. Beijing: China Agriculture Press, 2000: 66-157.
    [43] 郭荣发,杨杰文. 成土母质和种植制度对土壤pH和交换性铝的影响[J]. 生态学报, 2004, 24(5): 984-990.GUO R F, YANG J W. pH and the exchangeable aluminum content in acid soils as affected by parent materials and cropping systems[J]. Acta Ecologica Sinica, 2004, 24(5): 984-990.
    [44] 杨学春,朱亚萍. 四川紫色土的酸化及其生态效应[J]. 西南大学学报(自然科学版), 1995, 17(6): 532-537.YANG X C, ZHU Y P. Acidification of purple soil and its ecological effects[J]. Journal of Southwest University (Natural Sciences), 1995, 17(6): 532-537.
    [45] 李婷,张世熔,干文芝. 成都平原土壤pH的时空分布特征及影响因素研究[J]. 四川农业大学学报, 2006, 24(3): 313-318.LI T, ZHANG S R, WANG W Z. Temporal-spatial distribution characteristics and influence factors of soil pH in the Chengdu plain[J]. Journal of Sichuan Agricultural University, 2006, 24(3): 313-318.
    [46] STOLT M D, BAKER J C, SIMPSON T W. Soil-landscape relationships invirginial. soil variability and parent material uniformity[J]. Soil Seience Soeiety of America Joumal, 1993, 57: 414-421.
    [47] 曾觉廷,谢徳体. 土壤发生与分类学[M]. 四川: 成都科技大学出版社, 1996: 43-45.ZENG J T, XIE D T. Soil genesis and taxonomy[M]. Sichuan: Chengdu University of Science and Technology press, 1996: 43-45.
    [48] REZAEI S A, GILKES R J. The effects of landscape attributes and plant community on soil chemical properties in rangelands[J]. Geoderma, 2005, 125(1):145-154.
    [49] 赵海霞,李波,刘颖慧,等. 皇甫川流域不同尺度景观分异下的土壤性状[J]. 生态学报, 2005, 25(8): 2010-2018.ZHAO H X, LI B, LIU H Y, et al. The soilpropertiesalong landscape heterogeneity on different scales in Huangfuchuan Watershed[J]. Acta Ecologica Sinica, 2005, 25(8): 2010-2018.
    [50] SMITH J L, HALVORSON J J, BOLTON H. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment[J]. Soil Biology & Biochemistry, 2002, 34(11): 1749-1757.
    [51] ZHU J,WU W, LIU H B. Environmental variables controlling soil organic carbon in top- and sub-soils in karst region of southwestern China[J]. Ecological Indicators,2018(90):624-632.