声震效应作用下页岩气产能模型的建立
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment of the shale gas productivity model under the acoustic shock effect
  • 作者:田冷 ; 高占武 ; 冯波
  • 英文作者:TIAN Leng;GAO Zhanwu;FENG Bo;MOE Key Laboratory of Petroleum Engineering, China University of Petroleum;College of Petroleum Engineering,China University of Petroleum;No.3 Oil Production Plant of PetroChina Changqing Oilfield Branch;
  • 关键词:页岩气 ; 压裂水平井 ; 三线性流模型 ; 超声波 ; 多场耦合
  • 英文关键词:shale gas;;fractured horizontal well;;three linear flow model;;ultrasonic/supersonic wave;;multi-field coupling
  • 中文刊名:DQSK
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:中国石油大学(北京)石油工程教育部重点实验室;中国石油大学(北京)石油工程学院;中国石油长庆油田分公司第三采油厂;
  • 出版日期:2019-02-15 19:04
  • 出版单位:大庆石油地质与开发
  • 年:2019
  • 期:v.38;No.192
  • 基金:国家自然科学基金项目“基于声震效应的页岩储层多组分流体多场耦合流动机理”(U1562102);; 国家科技重大专项“致密气富集规律与勘探开发关键技术-致密气有效开采与提高采收率技术-致密气藏理论采收率标定”(2016ZX05047005-001)
  • 语种:中文;
  • 页:DQSK201902023
  • 页数:7
  • CN:02
  • ISSN:23-1286/TE
  • 分类号:162-168
摘要
页岩气储量丰富,开发难度大,目前多采用水平井压裂方式开采。在油气田开发中,超声波采油曾进行现场试验,取得较好效果。目前超声波提高采收率的研究集中于油藏近井解堵、除垢、检测,随着水平井多级压裂工艺发展,应用超声波提高页岩气采收率成为可能。用兰格缪尔方程描述解吸过程,对不同功率超声波作用下页岩气解吸过程进行定量实验研究,拟合回归p_L(Langmuir压力)、V_L(Langmuir体积)与超声波功率之间关系。将得到的超声波作用规律用于基于三线性流的页岩气藏模型中,并考虑滑脱效应、应力敏感,建立考虑超声波作用的页岩气产能模型。对模型无因次化处理,进行牛顿-辛普森迭代求解。对不同超声波功率进行敏感性研究分析,作用在页岩气藏的超声波功率越高,产量衰减越慢,累计产量越高。
        Reserves of the shale gas are rich, their development is rather difficult, at present, the horizontal well fracturing method is usually adopted for the development. In the development of the oil and gas fields, the ultrasonic oil production has been on-site tested, and furthermore much better effects have been achieved. At present, the study of the ultrasonic-wave enhanced oil recovery is focused on the removal,, descaling and detection nearby the well of the reservoirs, with the technological development of the multistge fracturing in the horizontal wells, it is possible to improve the recovery of the shale gas by the ultrasonic wave. The desorption process was described by Langmuir equation, and the desorption process of the shale gas under the actions of different-power ultrasonic waves was experimentally studied quantitatively, the relationships between p_L, V_L and the ultrasonic-wave power were fitted. The obtained laws of the ultrasonic wave actions were applied to the shale gas reservoir model based on the triplet flow, and moreover the slippage effect and stress sensitivity were considered to establish the shale gas productivity model considering the ultrasonic action. The dimensionless process for the model was conducted and Newton-Simpson iterative solution was used to solve the model. The sensitivities of different ultrasonic wave power were analyzed, the higher the ultrasonic wave power is, the slower the output attenuation and the higher the cumulative production will be.
引文
[1]李伟,陈凤,徐伯承. 超声波采油技术的实验研究与应用[J].大庆石油地质与开发,1997,16(1):53-56.LI Wei, CHEN Feng, XU Bocheng. Experimental study and application of ultrasonic oil recovery Technology [J].Petroleum Geology & Oilfield Development in Daqing, 1997,16(1):53-56.
    [2]闪俊杰,杜振雷,李青,等. 超声波在化学工业中的应用[J].河北工业科技,2009,26 (2):127-130.SHAN Junjie, DU Zhenlei, LI Qing, et al. Application of ultrasonic in chemical industry [J].Hebei Journal of Industrial Science and Technology, 2009, 26 (2): 127-130.
    [3]HAMIDA T,BABADAGLI T. Effects of ultrasonic waves on immiscible and miscible displacement in porous media[R].SPE 95327,2005.
    [4]WEI X,WANG S X,ZHAO J G,et al. Laboratory study of partial water saturation in tight gas sandstone at seismic and ultrasonic frequencies[R].SEG 2014-0937,2014.
    [5]易俊. 声震法提高煤层气抽采率的机理及技术原理研究[D].重庆:重庆大学,2007.YI Jun. A research of mechanism and technological principle of enhancing coalbed gas extraction rate by ultrasonic vibrating[D].Chongqing: Chongqing University, 2007.
    [6]刘保县. 延迟突出煤的物理力学特征和煤延迟突出机理研究[D].重庆:重庆大学,2000.LIU Baoxian. Study on physical and mechanical characteristics of delayed outburst and mechanism of delayed outburst[D].Chongqing: Chongqing University, 2000.
    [7]于永江,张春会,王来贵. 超声波干扰提高煤层气抽放率的机理[J].辽宁工程技术大学学报(自然科学版),2008,27 (6):805-808.YU Yongjiang, ZHANG Chunhui, WANG Laigui. Mechanism of ultrasonic interference to increase the rate of CBM [J].Journal of Liaoning Technical University (Natural Science), 2008, 27 (7): 805-808.
    [8]阳兴洋. 声震法促进煤层气解吸扩散流动的机理研究[D].重庆:重庆大学,2011.YANG Xingyang. A research on Mechanism of enhancing the desorption diffusion flowing of coalbed gas by ultrasonic vibrating[D].Chongqing: Chongqing University, 2011.
    [9]姜永东,熊令,阳兴洋,等. 声场促进煤中甲烷解吸的机理研究[J].煤炭学报,2010,35(10): 1649-1653.JIANG Yongdong, XIONG Ling, YANG Xingyang, et al. Mechanism research on sound field promoting the coal bed methane desorption [J].Journal of China Coal Society, 2010, 35 (10): 1649-1653.
    [10]姜永东,宋晓,刘浩,等. 大功率声波作用下煤层气吸附特性及其模型[J].煤炭学报,2014,39 (S1):152-157.JIANG Yongdong, SONG Xiao, LIU Hao, et al. Adsorption model and law of methane under the effect of high-power acoustic wave [J].Journal of China Coal Society, 2014, 39 (S1): 152-157.
    [11]宋晓. 声波作用下煤层气吸附解吸特性研究[D].重庆:重庆大学,2014.SONG Xiao. Characteristics of methane adsorption and desorption on coal under acoustic wave effect [J].Chongqing: Chongqing University, 2014.
    [12]吴昌军. 超声波促进页岩气解吸及改善渗流特性的机理和实验研究[D].成都:西南石油大学,2014.WU Cangjun. Mechanism and experimental study of ultrasonic enhanced shale gas desorption and improvement of percolation characteristics[D].Chengdu: Southwest Petroleum University, 2014.
    [13]吕晓光,吴文旷,李国强,等. 北美页岩气开发的关键技术[J].大庆石油地质与开发,2015,34(4):158-162.Lü Xiaoguang, WU Wenkuang, LI Guoqiang, et al. Key techniques for the shale gas development in North America[J].Petroleum Geology & Oilfield Development in Daqing, 2015, 34 (4):158-162.
    [14]任岚,何易东,赵金洲,等. 基于各向异性扩散方程的页岩气井改造体积计算模型[J].大庆石油地质与开发,2017,36(4):153-159.REN Lan, HE Yidong, ZHAO Jinzhou, et al. Calculating model of the shale-gas-well SRV based on anisotropic diffusion equation[J].Petroleum Geology and Oilfield Development in Daqing, 2017, 36 (4):153-159.
    [15]HESAM A,MAHMOOD A . Application of a novel ultrasonic technology to improve oil recovery with an environmental viewpoint[J].Journal of Petroleum and Environmental Biotechnology,2017,8(2):323-327.
    [16]NAJAFI I. A mathematical analysis of the mechanism of ultrasonic induced fluid percolation in porous media:Part I[R].SPE 141126,2010.
    [17]顾春元,虞建业,任永林,等. 超声波采油技术研究与应用[J]. 钻采工艺,2003,26(6):59-61.GU Chunyuan, YU Jianye, REN Yonglin, et al. Research and application of ultrasonic oil recovery technology[J].Drilling & Production Technology, 2003, 26 (6):59-61.
    [18]GOUTH F,MOEN-MAUREL L,JEANJEAN F. Characterization and modelling study of a triple porosity fractured reservoir[R].IPTC 11763,2007.
    [19]葛洪魁,申颖浩,宋岩,等. 页岩纳米孔隙气体流动的滑脱效应[J].天然气工业,2014,34(7):46-54.GE Hongkui, SHEN Yinghao, SONG Yan, et al. Slippage effect of shale gas flow in nanoscale pores[J].Natural Gas Industry, 2014, 34 (7):46-54.
    [20]HEIDEMENT R A,JEYE A A,MOTTADI M F,et al. An introduction to the properties of fluids and solids[M].Calgary,Alberta:University of Calgary Press,1984:5-15.
    [21]邓佳,朱维耀,刘锦霞,等. 考虑应力敏感性的页岩气产能预测模型[J].天然气地球科学,2013,24(3):456-460.DENG Jia, ZHU Weiyao, LIU Jinxia, et al. Productivity prediction model of shale gas considering stress sensitivity[J].Natural Gas Geoscience, 2013, 24(3):456-460.
    [22]PEDROSA O A,Pressure transient response in stress-sensitive formations[R].SPE 15115,1986.
    [23]田冷,申志强,王猛,等. 基于滑脱、应力敏感和非达西效应的页岩气压裂水平井产能模型[J].东北石油大学学报,2016,40(6):106-113.TIAN Leng, SHEN Zhiqiang, WANG Meng, et al. Productivity model of shale-gas fracturing horizontal wells based on slippage, stress sensitivity and non-Darcy effect [J].Journal of Northeast Petroleum University, 2016,40(6): 106-113.