桩-土-结构相互作用分析的等效计算桩长简化模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A simplified model of equivalent calculated pile length for soil-pile-structure interaction analysis
  • 作者:李再先 ; 李小军 ; 张智
  • 英文作者:LI Zaixian;LI Xiaojun;ZHANG Zhi;College of Architecture and Civil Engineering of Beijing University of Technology;School of Civil Engineering, Shandong Jianzhu University;
  • 关键词:桩-土-结构相互作用 ; 等效计算桩长 ; 简化计算模型 ; 振型周期变化率 ; Boulanger模型 ; OpenSees
  • 英文关键词:Pile-soil-structure interaction;;equivalent calculated pile length;;simplified model;;change rate of vibration mode period;;Boulanger model;;OpenSees
  • 中文刊名:DGGC
  • 英文刊名:Earthquake Engineering and Engineering Dynamics
  • 机构:北京工业大学建筑工程学院;山东建筑大学土木工程学院;
  • 出版日期:2019-02-15
  • 出版单位:地震工程与工程振动
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2017YFC1500400);; 国家自然科学基金项目(51738001);; 北京市重大科技专项(Z181100003918005)~~
  • 语种:中文;
  • 页:DGGC201901002
  • 页数:10
  • CN:01
  • ISSN:23-1157/P
  • 分类号:10-19
摘要
在一定程度上,桩长是影响桩-土-结构体系动力分析复杂程度的关键因素之一,在桩-土-结构相互作用的数值模拟中对桩长进行适当简化可以提高计算效率,尤其对具有大量长桩基础的结构体系。基于Boulanger模型和OpenSees软件,分析了软粘土地基-单桩结构体系地震反应中桩身的位移、弯矩、剪力的分布特点以及桩顶上部结构的加速度响应,探讨了结构体系振型及振型周期随桩长的变化特点,进一步提出了等效计算桩长的桩-土-结构模型。研究表明,当结构体系前3阶的振型周期的变化率控制到2.5%时,对应的等效计算桩长分析模型能实现较高的动力响应计算精度,其动力响应误差已降低至5%以内;等效计算桩长可以通过动力响应误差控制精度要求确定,对于软粘土地基中的单桩基础结构,建议将前3阶振型周期的变化率控制到2.5%时的计算桩长作为等效计算桩长。
        To a certain extent, the pile length is one of the key factors affecting the complexity of the dynamic analysis of the pile-soil-structure system. A proper simplification for the pile length can improve the calculation efficiency, especially for a structural system with a large number of long pile foundations. Based on Boulanger model and OpenSees, this study analyzed the earthquake response of the single pile-soil-structure system in the soft clay site, including the displacement, bending moment, shear force of the pile and the acceleration response of superstructure, and investigated the variation of vibration modes and mode periods with different pile length, and then proposed a pile-soil-structure model with equivalent calculated length pile. The results show that the model with equivalent calculated length pile has a high simulating accuracy, and the calculation error of the dynamic response of structure system is less than 5% when the change rate of the first three-mode periods of structure system is low than 2.5%; the equivalent calculated pile length can be determined by the accuracy requirement of the dynamic response error, and for the single pile structure in the soft clay site, it is suggested that the corresponding calculated pile length should be regarded as the equivalent calculated pile length when the change rate of the first three-mode periods is controlled to 2.5%.
引文
[1] 王克海. 桥梁抗震研究[M]. 北京:中国铁道出版社, 2014.WANG Kehai. Aseismic Research on Bridge[M].Beijing:China Railway Publishing House, 2007. (in Chinese)
    [2] 燕斌. 桥梁桩基础抗震简化模型比较研究[D]. 上海:同济大学, 2007.YAN Bin. Study on simplified models of bridge pile-foundation subjected [D]. Shanghai: TongJi University, 2007. (in Chinese)
    [3] 李雨润, 魏星, 梁艳, 等.液化土-桩-承台结构横向动力响应分析方法研究综述[J].地震工程与工程振动, 2012, 32(3):180-186. LI Yurun, WEI Xing, LIANG Yan, et al.State-of-art of study on dynamic interaction of liquefiable soil-pile-cap structure [J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(3):180-186. (in Chinese)
    [4] Datta T K. Seismic Analysis of Structures[M]. John Wiley & Sons, 2010.
    [5] Mazars J, Millard A. Dynamic behavior of concrete and seismic engineering[J]. Wiley-Iste, 2010, 132(7):782-783.
    [6] Halabian A M, Zafarani M M. A new modal pushover analysis approach for soil-structure interaction[J]. Structures & Buildings, 2014, 168(3): 210-234.
    [7] 韩庆华, 何金明, 刘铭劼.考虑土-结构相互作用的空间网格结构地震响应分析[J].地震工程与工程振动, 2018, 38(2):042-52.HAN Qinghua, HE Jinming, LIU Mingjie.Seismic response analysis of space frame structure considering soil-structure interaction [J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(2):042-52. (in Chinese)
    [8] Soneji B B, Jangid R S. Influence of soil–structure interaction on the response of seismically isolated cable-stayed bridge[J]. Soil Dynamics & Earthquake Engineering. 2008, 28(4): 245-257.
    [9] Carbonari S, Dezi F, Leoni G. Seismic soil-structure interaction in multi-span bridges: application to a railway bridge[J]. Earthquake Engineering & Structural Dynamics. 2011, 40(11): 1219-1239.
    [10] 薛素铎,刘毅,李雄彦. 土-结构动力相互作用研究若干问题综述[J]. 世界地震工程. 2013, 29(2): 1-9.XUE Suduo, LIU Yi, LI Xiongyan. Review of some problems about research on soil-structure dynamic interaction [J]. World Earthquake Engineering, 2013, 29(2): 1-9. (in Chinese)
    [11] 张亚旭, 王修信, 庄海洋.接触对桩-土-结构动力相互作用体系的影响[J].地震工程与工程振动, 2009, 29(6):176-181. ZHANG Yaxu, WANG Xiuxin, ZHUANG Haiyang.Effect of contact behavior on responses of pile-soil-structure dynamic interaction systems[J].Earthquake Engineering and Engineering Dynamics, 2009, 29(6):176-181. (in Chinese)
    [12] Mcclelland B, Focht J A. Soil modulus for laterally loaded piles[J]. Journal of the Soil Mechanics & Foundations Division. 1956, 82: 1-22.
    [13] Matlock H. Correlation for design of laterally loaded piles in soft clay[C]// Proc. of the Offshore Technology Conference. 1970:77-94.
    [14] Naggar M H E, Novak M. Nonlinear lateral interaction in pile dynamics[J]. Journal of Geotechnical Engineering. 1995, 14(4): 678-696.
    [15] Penzien J. Seismic analysis of bridges on long piles[J]. Journal of Engineering Mechanics Division Asec. 1964, 90(3): 223-254.
    [16] Boulanger R W, Curras C J, Kutter B L, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical & Geoenvironmental Engineering. 1999, 125(9): 750-759.
    [17] Curras C J, Boulanger R W, Kutter B L, et al. Dynamic experiments and analyses of a pile-group-supported structure[J]. Journal of Geotechnical & Geoenvironmental Engineering. 2001, 127(7): 585-596.
    [18] 李雨润, 史精, 梁艳, 等. 基于Opensees的桩土动力p-y曲线模型研究[J]. 民长江, 2015, 46(23):82-86. LI Yurun, SHI Jing, LIANG Yan, et all. Study on p-y curve model of dynamic pile-soil interaction based on OpenSees[J]. Yangtze River, 2015, 46(23):82-86. (in Chinese)
    [19] 赵春风,刘丰铭,邱志雄,等. 砂土中竖向和水平荷载共同作用下的单桩承载特性研究[J]. 岩土工程学报. 2015, 37(1): 183-190.ZHAO Chunfeng, LIU Fengming, QIU Zhixiong, et al. Study on bearing behavior of a single pile under combined vertical and lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 183-190. (in Chinese)
    [20] 崔春义, 孟坤, 程学磊, 等. 基于ADINA的桩土相互作用分析[J]. 地震研究, 2016, 39(1): 96-100.CUI Chunyi, MENG Kun, CHENG Xuelei, et al. Numerical analysis of pile-soil interaction based on ADINA[J]. Journal of Seismological Research, 2016, 39(1): 96-100. (in Chinese)
    [21] 陈正,梅岭,梅国雄. 柔性微型桩水平承载力数值模拟[J]. 岩土力学. 2011, 32(7): 2219-2224.CHEN Zheng, MEI Ling, MEI Guoxiong. Numerical simulation of lateral bearing capacity of flexible micropile[J]. Rock and Soil Mechanics, 2011, 32(7): 219-2224. (in Chinese)
    [22] 谢涛,袁文忠,马庭林,等. 水平承载下超大群桩受力变形特性的模型试验研究[J]. 岩石力学与工程学报. 2005, 24(9): 1582-1587.XIE Tao, YUAN Wenzhong, MA Tinglin, et al. Model testing study on deformation behavior of super-large pile group under horizontal load[J]. Cinese Journal of Rock Mechanics and Engineering. 2005, 24(9): 1582-1587. (in Chinese)
    [23] 谢涛,蒋泽中,马庭林,等. 组合荷载下超大群桩受力变形模型试验研究[J]. 工程地质学报. 2004, 12(2): 171-176.XIE Tao, JIANG Zezhong, MA Tinglin, et al. Physical model assessment of the deformation behavior of a super-large pile group under the combined load[J]. Journal of Engineering Geology. 2004, 12(2): 171-176. (in Chinese)
    [24] Mazzoni S, Mckenna F, Fenves G L. OpenSees command language[M]. Pacific Earthquake Engineering Research(PEER)Center, 2006.
    [25] Bardet J P, Ichii K, Lin C H. EERA: a computer program for equivalent-linear earthquake site response analyses of layered soil deposits[J]. University of Southern Californi Department of Civil Engineering, 2000.
    [26] Idriss I M. Response of soft soil sites during earthquakes[J]// Proc.h.b.seed Memorial Symp, 1990, 2: 273-289.
    [27] Seed H B, Sun J I. Implications of site effects in the mexico city earthquake of sept. 19, 1985 for earthquake-resistant design criteria in the San Francisco Bay area of California[R]. Earthquake Engineering Research Center, University of California, 1989.