薄壁件加工系统动态响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic response analysis of thin wall workpiece processing system
  • 作者:农胜隆 ; 高尚晗 ; 娄玉印
  • 英文作者:NONG Sheng-long;GAO Shang-han;LOU Yu-yin;Lushan College of Guangxi University of Science and Technology;School of Mechanical Engineering,Guangxi University of Science and Technology;
  • 关键词:主轴 ; 刀具 ; 薄壁工件 ; 连续梁模型 ; 共振 ; 动态响应
  • 英文关键词:spindle;;tool;;thin-walled workpiece;;continuous beam model;;resonance;;dynamic response
  • 中文刊名:JSJG
  • 英文刊名:Chinese Journal of Computational Mechanics
  • 机构:广西科技大学鹿山学院;广西科技大学机械学院;
  • 出版日期:2019-04-15
  • 出版单位:计算力学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51105084);; 2017年度广西高校中青年教师基础能力提升项目(2017KY1393);; 2015年度广西高校科学技术研究项目(KY2015LX777)资助项目
  • 语种:中文;
  • 页:JSJG201902004
  • 页数:7
  • CN:02
  • ISSN:21-1373/O3
  • 分类号:24-30
摘要
薄壁件在铣削加工中容易产生共振或变形,直接影响加工稳定性及加工精度。采用主轴-刀具-工件整体铣削系统连续梁模型,系统研究在动态铣削力作用下,刀具端部与工件端部的动态响应之间的相互影响关系以及对整体系统动态响应影响较大的薄壁件尺寸。结果表明,工件横截面高度对系统共振的影响较为明显,当高度尺寸较小时,工件的低频共振会通过动态铣削力直接反映到刀具端部的振动频响上。工件横截面底边宽度尺寸的增大虽然对共振频率的改变不太明显,但会导致激发出来的刀具共振幅度出现明显降低。研究成果可以为薄壁件铣削加工系统的稳定性控制提供理论基础。
        In thin-walled workpiece machining,the resonance and deformation easily occur and directly affect the machining stability and accuracy.This paper adopts the continuous beam for the whole milling system,which includes the spindle,the tool and the workpiece,to study the effects of the dynamic milling force on the relationship between the dynamic responses of the tool end and the workpiece end.The sizes of parts which have significant influences on the dynamic responses of the whole system are studied.It is noted that the sectional height of workpiece has more obvious effects.With small height value,the low frequency resonance of workpiece is directly reflected in the vibration responses of the cutter end through the dynamic milling force.The sectional width dimension changes the resonance frequency slightly,but it reduces the resonance amplitude of the tool end.These results provide a theoretical basis for the stability control of the thin-walled workpiece machining system.
引文
[1] 刘书田,刘杨,童泽奇.基于元胞自动机的变厚度薄壁梁侧向耐撞性优化设计方法[J].计算力学学报,2016,33(4):528-535.(LIU Shu-tian,LIU Yang,TONG Ze -qi.A hybrid cellular automata based me -thod of variable thickness thin-walled beam for crashworthiness optimization under lateral impact [J].Chinese Journal of Computational Mechanics,2016,33(4):528-535.(in Chinese))
    [2] Mann B P,Young K A,Schmitz T L,et al.Simultaneous stability and surface location error predictions in milling [J].Journal of Manufacturing Science and Engineering,2005,127(3):446-453.
    [3] Insperger T,Gradi?ek J,Kalveram M,et al.Machine tool chatter and surface location error in milling processes [J].Journal of Manufacturing Science and Engineering,2006,128(4):913-920.
    [4] 郭翠云,王昊,朱炳麒.横向力作用下悬臂梁固定端应力分布研究[J].计算力学学报,2017,34(3):397-402.(GUO Cui-yun,WANG Hao,ZHU Bing-qi.Stress distribution at the fixed end of a cantilever beam under lateral force [J].Chinese Journal of Computational Mechanics,2017,34(3):397-402.(in Chinese))
    [5] Franco P,Estrems M,Faura F.A study of back cu-tting surface finish from tool errors and machine tool deviations during face milling [J].International Journal of Machine Tools and Manufacture,2008,48(1):112-123.
    [6] Dépincé P,Haseo?t J Y.Active integration of tool deflection effects in end milling,Part l:Prediction of milled surfaces [J].International Journal of Machine Tools and Manufacture,2006,46(9):937-944.
    [7] Rao V S,Rao P V M.Tool deflection compensation in peripheral milling of curved geometries [J].International Journal of Machine Tools and Manufacture,2006,46(15):2036-2043.
    [8] 阎兵,张大卫,徐安平,等.球头刀铣削过程动力学模型[J].机械工程学报,2002,38(5):22-26.(YAN Bing,ZHANG Da-wei,XU An-ping,et al.Dynamic modeling of ball end milling [J].Chinese Journal of Mechanical Engineering,2002,38(5):22-26.(in Chinese))
    [9] Ratchev S,Liu S,Huang W,et al.Milling error prediction and compensation in machining of low-rigidity parts [J].International Journal of Machine Tools and Manufacture,2004,44(15):1629-1641.
    [10] Rai J K,Xirouchakis P.Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components [J].International Journal of Machine Tools and Manufacture,2008,48(6):629-643.
    [11] 蒋宇平,龙新华,孟光.薄壁结构件铣削加工振动稳定性分析[J].振动与冲击,2016,35(2):45-50.(JIANG Yu-ping,LONG Xin-hua,MENG Guang.Stability analysis for thin-walled milling processes[J].Journal of Vibration and Shock,2016,35(2):45-50.(in Chinese))
    [12] Wan M,Zhang W H,Qin G H,et al.Strategies for error prediction and error control in peripheral milling of thin-walled workpiece [J].International Journal of Machine Tools and Manufacture,2008,48(12-13):1366-1374.
    [13] Gao S H,Nong S L,Xu W B,et al.The nonlinear vibration and stability of a non-uniform continuous spindle system with nonlinear and nonsmooth boun-daries [J].Journal of Vibration and Control,2016,22(5):1392-1404.
    [14] Gao S H,Meng G.Research of the spindle overhang and bearing span on the system milling stability [J].Archive of Applied Mechanics,2011,81(10):1473-1486.
    [15] 朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究,2005,21(1):28-30.(ZHU Jin-hu,WENG Shi-xiu,JIANG Shu-yun.Calculation and analysis of critical speed characteristics of high frequency motorized spindle[J].Machine Design and Research,2005,21(1):28-30.(in Chinese))
    [16] Altinta? Y,Budak E.Analytical prediction of stability lobes in milling [J].CIRP Annals,1995,44(1):357-362.