竞争型非线性介质中艾里-高斯光束交互作用的调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control on interaction of Airy-Gaussian beams in competing nonlinear medium
  • 作者:陈卫 ; 宋德 ; 李野 ; 王新 ; 秦旭磊 ; 刘春阳
  • 英文作者:Chen Wei-Jun;Song De;Li Ye;Wang Xin;Qin Xu-Lei;Liu Chun-Yang;School of Science, Changchun University of Science and Technology;
  • 关键词:竞争型非线性 ; 艾里-高斯光束 ; 交互作用 ; 光场调控
  • 英文关键词:competing nonlinearity;;Airy-Gaussian beam;;interactions;;light field control
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:长春理工大学理学院;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51602028,11805072,11874091);; 吉林省科技厅重点科技攻关项目(批准号:2018020103GX);; 长春市科技局地院合作专项(批准号:17DY029);; 长春理工大学青年科学基金(批准号:XQNJJ-2017-04)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909019
  • 页数:8
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:164-171
摘要
基于分步傅里叶法研究了艾里-高斯光束在三次聚焦和五次散焦竞争型非线性介质中交互作用的调控.结果表明:当入射角度为零时,同相位艾里-高斯光束相互吸引,五次散焦非线性强度较弱时,可形成周期逐渐缩短的呼吸孤子或强度不变的孤子.五次散焦非线性强度较强时,呼吸孤子的平均宽度变大甚至出现光束分叉现象,形成孤子对.反相位艾里-高斯光束相互排斥,排斥力随五次散焦非线性强度单调递增.当入射角度不为零时,通过控制光束入射角度的正负和初始间距.同相位和反相位艾里-高斯光束交互作用时可以同时表现出相互吸引和排斥的现象.
        An investigation of control on the interaction of Airy-Gaussian beams(AiGBs) in cubic focusing and quintic defocusing competing nonlinear medium is performed by the split-step Fourier transform method. When the initial launch angle v is zero, two in-phase AiGBs attract each other and the breathing soliton with decaying period or soliton with invariant intensity can form in the case of weaker quintic defocusing nonlinearity.However, the interaction between two in-phase AiGBs under stronger quintic defocusing causes the average width of the breathing soliton to increase and even the beam bifurcation to occur, leading to the generation of soliton pairs. For the out-of-phase case, they repel each other, and the repulsive force increases monotonically with the increase of the quintic defocusing nonlinearity. When the initial launch angle for each of AiGBs is not zero, mutual attraction and repulsion can be exhibited during their interactions by adjusting the sign of v and the interval d. For the in-phase case, if v < 0 and d < 0 or v > 0 and d > 0, there are strong repulsive force and weak attraction between the two AiGBs, resulting in the formation of soliton pairs, and with the decrease of the interval, the attraction becomes greater. When the interval is small enough, the overlapping of the light field can make the nonlinear effect identical to the diffraction effect, the attraction between the two AiGBs increases,while the repulsion force is almost zero, and then a single breathing soliton can be generated in the center of the two AiGBs. If v < 0 and d > 0(big enough) or v > 0 and d < 0, the constructive interference between two AiGBs causes the autofocusing beams first to be generated, then to repel each other, and the soliton pairs can form. For the out-of-phase case, if v < 0 and d < 0 or v > 0 and d > 0, the repulsion between the two AiGBs becomes bigger, and the repulsion increases with |v| monotonically. If v < 0 and d > 0 or v > 0 and d < 0, the elastic collision between the two AiGBs shows the phenomenon: first attracting and then repelling mutually.When both v and d are small enough, soliton pairs cannot form due to the unbalance between the strong diffraction effect and weaker nonlinear effect induced by the destructive interference.
引文
[1] Berry M V, Balazs N L 1979 Am. J. Phys. 47 264
    [2] Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979
    [3] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N2007 Phys. Rev. Lett. 99 213901
    [4] Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675
    [5] Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys.Sin.61 174207(in Chinese)[任志君,吴琼,周卫东,吴根柱,施逸乐2012物理学报61 174207]
    [6] Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S2010 Phys. Rev. Lett. 105 253901
    [7] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A,Christodoulides D N 2009 Science 324 229
    [8] Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys.Lett. 102 101101
    [9] Wiersma N, Marsal N, Sciamanna M, Wolfersberger D 2014Opt. Lett. 39 5997
    [10] Liang Y, Hu Y, Song D, Lou C, Zhang X, Chen Z, Xu J 2015Opt. Lett. 40 5686
    [11] Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258
    [12] Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648
    [13] Clerici M, Hu Y, Lassonde P, Millian C, Couairon A,Christodoulides D N, Chen Z, Razzari L, Vidal F, Legare F,Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111
    [14] Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62034209(in Chinese)[张泽,刘京郊,张鹏,倪培根,Prakash Jai,胡洋,姜东升,Christodoulides Demetrios N,陈志刚2013物理学报62 034209]
    [15] Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys.75 086401
    [16] Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
    [17] Fattal Y, Rudnick A, Marom D M 2011 Opt. Express 19 17298
    [18] Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A,Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A86 013842
    [19] Hu Y,Sun Z,Bongiovanni D,Song D,Lou C, Xu J,Morandotti R 2012 Opt. Lett. 37 3201
    [20] Zhang Y, Belic M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y2013 Opt. Lett. 38 4585
    [21] Zhang L F, Huang P W, Conti C, Wang Z T, Hu Y H, Lei D J, Li Y, Fan D Y 2017 Opt. Express 25 1856
    [22] Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814
    [23] Zhou G, Chen R, Ru G 2014 Laser Phys. Lett. 11 105001
    [24] Xiao F, Li B, Wang M, Zhu W, Zhang P, Liu S, Zhao J 2014Opt. Express 22 22763
    [25] Zhang M, Huo G, Zhong H, Hui Z 2017 Opt. Express 25 22104
    [26] Wu Z K, Guo H, Wang W, Gu Y Z 2018 Front. Phys. 13134201
    [27] Chen W, Lu K, Yang J, Liu C, Wang X, Mu Y 2018 Appl.Phys. B 124 217
    [28] Zhan K, Yang Z, Jiao R, Liu B, Han G, Xu X, Jiao Z 2019Opt. Commun. 432 49
    [29] Bandres M A, Gutierrez-Vega J C 2007 Opt. Express 15 16719
    [30] Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504
    [31] Peng Y, Peng X, Chen B, Zhou M, Chen C, Deng D 2016Opt. Commun. 359 116
    [32] Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016Chin. Phys. B 25 084102
    [33] Deng D M 2011 Eur. Phys. J. D 65 553
    [34] Deng D, Li H 2012 Appl. Phys. B 106 677
    [35] Zhang X 2016 Opt. Commun. 367 364
    [36] Shi Z, Xue J, Zhu X, Xiang Y, Li H 2017 Phys. Rev. E 95042209
    [37] Jiang Q, Su Y, Ma Z, Zheng W, Li Y, Nie H 2018 J. Mod.Opt. 65 2243
    [38] Chen W J, Lu K Q, Hui J L, Zhang B J 2016 Acta Phys. Sin.65 244202(in Chinese)[陈卫军,卢克清,惠娟利,张宝菊2016物理学报65 244202]
    [39] Chen W, Ju Y, Liu C, Wang L, Lu K 2018 Chin. Phys. B 27114216
    [40] Dimitrevski K, Reimhult E, Svensson E, Ohgren A, Anderson D, Berntson A, Quiroga-Teixeiro M L 1998 Phys. Lett. A 248369
    [41] Reyna A S, Malomed B A, de Araujo C B 2015 Phys. Rev. A92 033810
    [42] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N2008 Opt. Lett. 33 207
    [43] Zhang Y, Belic M, Sun J, Zheng H, Wu Z, Chen H, Zhang Y2015 Rom. Rep. Phys. 67 1099
    [44] Deng F, Yu W, Deng D 2016 Laser Phys. Lett. 13 116202