2002—2016年华北平原植被生长状况及水文要素时空特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal changes in vegetation and hydrological factors in the North China Plain from 2002 to 2016
  • 作者:曹艳萍 ; 秦奋 ; 庞营军 ; 赵芳 ; 黄金亭
  • 英文作者:CAO Yanping;QIN Fen;PANG Yingjun;ZHAO Fang;HUANG Jinting;The College of Environment and Planning of He′nan University;Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region;Institute of Desertification Studies, Chinese Academy of Forestry;
  • 关键词:植被 ; 增强型植被指数 ; 降水 ; 水储量 ; 地下水 ; 土壤水
  • 英文关键词:vegetation;;enhanced vegetation index;;precipitation;;terrestrial water storage;;groundwater;;soil moisture
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:河南大学环境与规划学院;黄河中下游数字地理技术教育部重点实验室;中国林业科学研究院荒漠化研究所;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41701503);; 河南大学地理学优势学科建设经费;河南大学杰出人才特区支持计划特聘教授科研启动费;河南大学引进博士科研启动基金项目(B2015060)
  • 语种:中文;
  • 页:STXB201905008
  • 页数:12
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:80-91
摘要
基于MODIS增强型植被指数(EVI)资料,结合降水、GRACE重力卫星水储量(TWS)、地下水、土壤水等资料,分析华北平原植被2002—2016年间的生长状况及各水文要素时空分布特征。研究结果表明:(1)2002—2016年间华北平原植被呈好转趋势,降水、水储量、土壤水、地下水等水文要素值呈减少趋势。(2)黄淮平原区植被以农作物为主,植被覆盖度呈增加趋势,而降水、水储量、地下水、土壤水均呈减少趋势,超采地下水灌溉农作物是短期内保障粮食安全的重要措施。(3)燕山-太行山山麓平原区、冀鲁豫低洼平原区的城乡居民用地区域植被覆盖显著减少,而降水增多,水储量、土壤水、地下水减少,人类活动对植被和水文要素贡献量大。(4)山东丘陵农林区分布着林地和草地,这些区域生长季的植被指数呈减少趋势,与降水量减少呈正相关关系。在气候变化和人类活动影响的大背景下,探讨不同生态环境的植被生长特征,清楚植被对水文变化的响应机理,可以消除影响植被生长的不利因素,为制定合理用水制度提供理论依据。
        In this study we investigated the spatial-temporal dynamics and trends of vegetation and its association with changes in various hydrological factors in the North China Plain between 2002 and 2016, by combining the MODIS enhanced vegetation index(EVI) with precipitation, GRACE gravity satellite terrestrial water storage(TWS), groundwater, and soil moisture. Our results showed that:(1) from 2002 to 2016, the vegetation of the North China Plain exhibited an increasing trend, whereas there was a decreasing trend in the hydrological factors(TWS, soil moisture, groundwater);(2) being mainly covered by crops, the vegetation in the Huanghuai plain area increased during the study period. However, precipitation, TWS, groundwater, and soil moisture all decreased. Over-exploitation of groundwater to irrigate crops is an important measure to ensure food security in the short term;(3) the contrasting trends in the decreasing vegetation coverage, TWS, soil moisture, and groundwater with increasing precipitation over the urban and rural residential areas in the Yanshan-taihang mountains piedmont plain and Ji-lu-yu low lying plain may be a result of influences from intense human activities;(4) the natural forest and grassland ecosystems located in the Shandong hilly agroforestry region were positively correlated with precipitation during the study period, both showing decreasing trends. Results from this research will generate a better understanding of vegetation dynamics in different ecological environments and its response mechanisms to changes of different hydrological factors. This will guide the design of rational water-use strategies for a changing climate and increasing anthropological activities.
引文
[1] Cornelissen J H C, van Bodegom P M, Aerts R, Callaghan T V, van Logtestijn R S P, Alatalo J, Chapin F S, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley A E, Hik D S, Hofgaard A, Jónsdóttir I S, Karlsson S, Klein J A, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko V G, Quested H M, Sandvik S M, Schmidt I K, Shaver G R, Solheim B, Soudzilovskaia N A, Stenstr?m A, Tolvanen A, Totland ?, Wada N, Welker J M, Zhao X Q, Team M O L. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10(7): 619- 627.
    [2] 孙红雨, 王长耀, 牛铮, 布和敖斯尔, 李兵. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析. 遥感学报, 1998, 2(3): 204- 210.
    [3] Koirala S, Jung M, Reichstein M, de Graaf I E M, Camps-Valls G, Ichii K, Papale D, Ráduly B, Schwalm C R, Tramontana G, Carvalhais N. Global distribution of groundwater-vegetation spatial covariation. Geophysical Research Letters, 2017, 44(9): 4134- 4142.
    [4] Liu C M, Yu J J, Eloise K. Groundwater exploitation and its impact on the environment in the North China plain. Water International, 2001, 26(2): 265- 272.
    [5] Yu F F, Price K P, Ellis J, Shi P J. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment, 2003, 87(1): 42- 54.
    [6] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83(1/2): 195- 213.
    [7] 卓嘎, 陈思荣, 周兵. 青藏高原植被覆盖时空变化及其对气候因子的响应. 生态学报, 2018, 38(9): 3208- 3218.
    [8] 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学 D辑: 地球科学, 2007, 37(11): 1504- 1514.
    [9] 王行汉, 丛沛桐, 刘超群, 亢庆, 扶卿华, 赵敏, 王晓刚, 刘晓林. 2004- 2013年珠江流域植被变化及其胁迫分析. 生态学报, 2017, 37(19): 6494- 6503.
    [10] 罗敏, 古丽·加帕尔, 郭浩, 郭辉, 张鹏飞, 孟凡浩, 刘铁. 2000—2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析. 自然资源学报, 2017, 32(1): 50- 63.
    [11] 袁丽华, 蒋卫国, 申文明, 刘颖慧, 王文杰, 陶亮亮, 郑华, 刘孝富. 2000- 2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798- 7806.
    [12] 李卓, 孙然好, 张继超, 张翀. 京津冀城市群地区植被覆盖动态变化时空分析. 生态学报, 2017, 37(22): 7418- 7426.
    [13] 阿多, 赵文吉, 宫兆宁, 张敏, 范云豹. 1981—2013华北平原气候时空变化及其对植被覆盖度的影响. 生态学报, 2017, 37(2): 576- 592.
    [14] 赵舒怡, 宫兆宁, 刘旭颖. 2001- 2013年华北地区植被覆盖度与干旱条件的相关分析. 地理学报, 2015, 70(5): 717- 729.
    [15] Wang Q F, Shi P J, Lei T J, Geng G P, Liu J H, Mo X Y, Li X H, Zhou H K, Wu J J. The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. International Journal of Climatology, 2015, 35(13): 3760- 3769.
    [16] Cao Y P, Nan Z T, Cheng G D. GRACE Gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sensing, 2015, 7(1): 1021- 1047.
    [17] Save H, Bettadpur S, Tapley B D. High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547- 7569.
    [18] Feng W, Zhong M, Lemoine J M, Biancale R, Hsu H T, Xia J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 2013, 49(4): 2110- 2118.
    [19] Chen Y Y, Yang K, He J, Qin J, Shi J C, Du J Y, He Q. Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research: Atmospheres, 2011, 116(D20): D20104.
    [20] 刘洋, 李诚志, 刘志辉, 邓兴耀. 1982- 2013年基于GIMMS-NDVI的新疆植被覆盖时空变化. 生态学报, 2016, 36(19): 6198- 6208.