不同反应气氛下氢终止金刚石表面的活化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface Activation Properties of the Hydrogen-terminated Diamond in Different Reaction Atmospheres
  • 作者:简小刚 ; 王俊鹏 ; 何嘉诚
  • 英文作者:JIAN Xiao-gang;WANG Jun-peng;HE Jia-cheng;School of Mechanical Engineering,Tongji University;
  • 关键词:金刚石 ; 活性位点 ; 过渡态搜索 ; 第一性原理 ; 吸附能
  • 英文关键词:diamond;;active site;;transition state search;;first-principle;;adsorption energy
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:同济大学机械与能源工程学院;
  • 出版日期:2019-03-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.245
  • 基金:国家自然科学基金(51275358);; 中央高校专项基金(20140750)
  • 语种:中文;
  • 页:RGJT201903011
  • 页数:7
  • CN:03
  • ISSN:11-2637/O7
  • 分类号:73-79
摘要
为了探究金刚石沉积过程中不同反应气氛下萃取基团对金刚石表面活化的影响,基于金刚石的同质外延生长机理,采用第一性原理平面波赝势方法分析了三种萃取基团(H、OH、Cl)在氢终止的金刚石[100]表面的吸附难易程度;并通过过渡态搜索计算,获得了CH4/H2,CH4/H2/CH3COCH3,C2H5Cl/H2三种反应气氛下金刚石氢终止表面产生活性位点的反应热及活化能。经对比分析后发现,H、OH、Cl在氢终止金刚石表面的吸附能逐渐增强,且Cl萃取金刚石表面氢原子产生活性空位的能垒最低。因而,在传统的CH4/H2气氛中引入氧元素或氯元素能有效降低金刚石表面活化所需的能量。
        In order to study the effect of the extraction groups on the activation of diamond surface in different reaction atmospheres during diamond deposition, based on the mechanism of diamond homoepitaxial growth,the first principle pseudo-potential plane wave method was used to study the adsorption ease of the extraction groups( H,OH,Cl) on the hydrogen terminated diamond [100].Through the transition state search,the reaction heats and energy barriers of the generating active sites on the hydrogen-terminated diamond under CH4/H2, CH4/H2/CH3 COCH3 and C2 H5 Cl/H2 reaction atmospheres were obtained. After comparative analysis,it was found that the adsorption energy of H,OH and Cl is gradually enhanced,and the energy barrier of Cl extraction is the lowest. Based on the above conclusions,the introduction of oxygen or chlorine element in the traditional CH4/H2 atmosphere can reduce the energy required for diamond surface activation.
引文
[1]Jian X G,Shi L D,Chen M,et al.Tribological studies on ultra-fine diamond composite coatings deposited on tungsten carbide[J].Diamond&Related Materials,2006,15(2-3):313-316.
    [2]Mostofi M,Richard T,Franca L,et al.Wear Response of Impregnated Diamond Bits[J].Wear,2018.
    [3]Shen B,Sun F.Deposition and friction properties of ultra-smooth composite diamond films on Co-cemented tungsten carbide substrates[J].Diamond&Related Materials,2009,18(2):238-243.
    [4]郑艳彬.高品质CVD金刚石的合成及其在刻刀方面的应用研究[D].长春:吉林大学,2010.
    [5]Petherbridge J,May P W,Pearce S R J,et al.Molecular beam mass spectrometry investigations of low temperature diamond growth using CO2/CH4plasmas[J].Diamond&Related Materials,2001,10(3):393-398.
    [6]Schmidt I,Benndorf C.Using fluorine and chlorine in the diamond CVD process[J].Diamond&Related Materials,1999,8(2-5):231-235.
    [7]康健.硅衬底上化学气相沉积金刚石研究[D].北京:北京大学,1999.
    [8]Tanguy V R,Karin L.A Theoretical Study of Nitrogen‐Induced Effects on Initial Steps of Diamond CVD Growth[J].Chemical VaporDeposition,2010,14(7-8):224-231.
    [9]Li T,Liu T,Wei H,et al.First-principles calculations of the twin boundary energies and adhesion energies of interfaces for cubic face-centered transition-metal nitrides and carbides[J].Applied Surface Science,2015,355:1132-1135.
    [10]孟凡顺,李久会,赵星.第一性原理研究Zn偏析对CuΣ5晶界的影响[J].物理学报,2014,63(23):259-266.
    [11]Saniz R,Ye L H,Shishidou T,et al.Structural,electronic,and optical properties of Ni Al3:First-principles calculations[J].Phys.rev.b,2006,74(1):4209.
    [12]Ullah M,Ahmed E,Hussain F,et al.Electrical conductivity enhancement by boron-doping in diamond using first principle calculations[J].Applied Surface Science,2015,334:40-44.
    [13]简小刚,陈军.Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响[J].物理学报,2015,64(21):360-365.
    [14]Wang Q J,Tan Q H,Liu Y K.First-principles study on ferromagnetism in Mn-doped tetragonal Bi Fe O3[J].Computational Materials Science,2015,105:1-5.
    [15]Zhao J X,Ding Y H.Theoretical study of noncovalent functionalization of BN nanotubes by various aromatic molecules[J].Diamond&Related Materials,2010,19(7-9):1073-1077.
    [16]Kresse G,Hafner J.First-principles study of the adsorption of atomic H on Ni(111),(100)and(110)[J].Surface Science,2000,459(3):287-302.
    [17]Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules[J].Journal of Chemical Physics,1990,92(1):508-517.
    [18]Delley B.From molecules to solids with the DMol3approach[J].Lettere Al Nuovo Cimento,2000,8(6):361-364.
    [19]Halgren T A,Lipscomb W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states[J].Chemical Physics Letters,1977,49(2):225-232.
    [20]Henkelman G,Uberuaga B P,Jónsson H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].Journal of Chemical Physics,2000,113(22):9901-9904.
    [21]Parr R G,von Szentpaly L,Liu S.Electrophilicity index[J].Journal of the American Chemical Society,1999,121(121):1922-1924.