非均质超稠油油藏SAGD快速启动技术界限——以风城油田侏罗系齐古组超稠油油藏为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Limits of SAGD Fast Start-Up Technology for Heterogeneous Super Heavy Oil Reservoirs:A Case Study of Super Heavy Oil Reservoir of Jurassic Qigu Formation in Fengcheng Oilfield
  • 作者:赵睿 ; 罗池辉 ; 张宇 ; 祁明霞 ; 孟祥兵 ; 甘衫衫
  • 英文作者:ZHAO Rui;LUO Chihui;ZHANG Yu;QI Mingxia;MENG Xiangbing;GAN Shanshan;Research Institute of Exploration and Sevelopment,Xinjiang Oilfield Company,PetroChina;
  • 关键词:风城油田 ; 非均质超稠油油藏 ; SAGD ; 快速启动技术 ; 数值模拟 ; 扩容特征
  • 英文关键词:Fengcheng oilfield;;heterogeneous super heavy oil reservoir;;SAGD;;fast start-up technology;;numerical simulation;;expansion feature
  • 中文刊名:XJSD
  • 英文刊名:Xinjiang Petroleum Geology
  • 机构:中国石油新疆油田分公司勘探开发研究院;
  • 出版日期:2019-04-01
  • 出版单位:新疆石油地质
  • 年:2019
  • 期:v.40;No.197
  • 基金:国家科技重大专项(2016ZX05055-002,2016ZX05012-002);; 中国石油科技重大专项(2017E-0408)
  • 语种:中文;
  • 页:XJSD201902012
  • 页数:5
  • CN:02
  • ISSN:65-1107/TE
  • 分类号:77-81
摘要
以风城油田侏罗系齐古组非均质超稠油油藏为例,利用室内岩石力学实验结果,建立耦合应力场的数值模型,进行SAGD快速启动扩容过程的数值模拟分析,描述了风城超稠油油藏储集层的扩容特征,结果显示:在快速启动结束时,近井筒地带孔隙度提高2%,渗透率增加10%~100%,体积扩容率最大为1.74%,储集层可实现有效扩容。在此基础上,分别研究了水平井轨迹、储集层岩性、物性变化对快速启动技术的影响,得到SAGD快速均匀启动技术界限。研究结果表明:沿水平段无大段泥岩发育,水平段渗透率级差小于3,SAGD上下井轨迹垂向偏移小于1 m或平面偏移小于2 m的井组均适合采用快速启动,现场可针对SAGD井组及油藏实际情况选择性实施快速启动技术。
        Taking the super heterogeneous heavy oil reservoir of Jurassic Qigu formation in Fengcheng oilfield and using indoor rock mechanics experimental results, the paper establishes numerical models of coupled stress field, carries out numerical simulation analysis onSAGD fast start-up expansion process, and describes expansion features for the super heavy oil reservoirs. The results show that when thefast start-up ends, the porosity and the permeability in near-wellbore zones increase by 2% and 10%~100%, respectively, and the volumeexpansion rate can reach 1.74%, indicating the reservoir can be effectively expanded. Based on which, the influences of horizontal well trajectory, reservoir lithology and physical property on the fast start-up technology are studied, and the limits of SAGD rapid and uniform startup technology are obtained. The study results reveal that the well groups with the following conditions can satisfy the fast start-up technology: no large mudstone section is developed along the horizontal section, the order differential of the permeability in the horizontal section isless than 3 and the vertical deviations between the upper and lower trajectory in the SAGD well are less than 1 m or the horizontal deviationis less than 2 m. The fast start-up technology should be implemented according to the actual situations of SAGD well groups and reservoirsduring field practices.
引文
[1]VANEGAS J W,PRADA L B,CUNHA F J S.Evaluation of steam circulation strategies for SAGD startup[R].SPE 97918,2005.
    [2]霍进,桑林翔,刘名,等.风城油田蒸汽辅助重力泄油启动阶段注采参数优化[J].新疆石油地质,2015,36(2):191-194.HUO Jin,SANG Linxiang,LIU Ming,et al.Injection-production parameters optimization at startup phase of SAGD in Fengcheng oilfield,Junggar basin[J].Xinjiang Petroleum Geology,2015,36(2):191-194.
    [3]霍进,桑林翔,杨果,等.双水平井蒸汽辅助重力泄油汽腔上升阶段的注采调控[J].新疆石油地质,2012,33(6):694-696.HUO Jin,SANG Linxiang,YANG Guo,et al.Injection-production regulation and control for dual horizontal wells in steam chamber rising stage by steam assisted gravity drainage(SAGD)process[J].Xinjiang Petroleum Geology,2012,33(6):694-696.
    [4]席长丰,马德胜,李秀峦,等.双水平井超稠油SAGD循环预热启动优化研究[J].西南石油大学学报(自然科学版),2010,32(4):103-108.XI Changfeng,MA Desheng,LI Xiuluan,et al.Study on SAGD technology for ultra heavy oil in dual horizontal wells[J].Journal of Southwest Petroleum University(Science&Technology Edition),2010,32(4):103-108.
    [5]张磊,黄勇,何小东,等.双水平井SAGD挤液预处理启动水力连通模型[J].西安石油大学学报(自然科学版),2017,32(2):64-69.ZHANG Lei,HUANG Yong,HE Xiaodong,et al.Hydraulic connection model in squeeze preprocessing SAGD start-up[J].Journal of Xi’an Shiyou University(Natural Science Edition),2017,32(2):64-69.
    [6]刘维国,单钰铭,傅荣华.岩石扩容过程中的体积应变与超声横波速度[J].成都理工大学学报(自然科学版),2006,46(4):360-364.LIU Weiguo,SHAN Yuming,FU Ronghua.A study of the relationship between the volumetric strain and the ultrasonic S-wave velocities in dilatancy of rocks[J].Journal of Chengdu University of Technology(Science&Technology Edition),2006,46(4):360-364.
    [7]赵睿,罗池辉,陈河青,等.鱼骨注汽水平井SAGD在风城油田超稠油油藏中的应用[J].新疆石油地质,2017,38(5):611-615.ZHAO Rui,LUO Chihui,CHEN Heqing,et al.Application of SAGDtechnology with fishbone steam-injection horizontal well in super heavy oil reservoirs[J].Xinjiang Petroleum Geology,2017,38(5):611-615.
    [8]杨洪,何小东,李畅,等.双水平井SAGD快速启动技术研究进展[J].新疆石油地质,2016,37(4):489-493.YANG Hong,HE Xiaodong,LI Chang,et al.Advances of fast startup technologies of SAGD process for dual horizontal wells[J].Xinjiang Petroleum Geology,2016,37(4):489-493.
    [9]高彦芳,陈勉,林伯韬,等.稠油油藏SAGD微压裂阶段储层压缩系数研究--以新疆风城陆相储层重1区齐古组为例[J].石油科学通报,2017,2(2):240-250.GAO Yanfang,CHEN Mian,LIN Botao,et al.Study on compressibility during micro-fracturing in continental ultra-heavy oil sand reservoirs-taking the Qigu formation of Xinjiang Fengcheng oilfield Z1block for instance[J].Petroleum Science Bulletin,2017,2(2):240-250.
    [10]高彦芳,陈勉,林伯韬,等.SAGD井挤液扩容水力波及范围模型[J].新疆石油地质,2018,39(2):202-208.GAO Yanfang,CHEN Mian,LIN Botao,et al.An analytical model for water swept area in SAGD wells[J].Xinjiang Petroleum Geology,2018,39(2):202-208.
    [11]石兰香,李秀峦,马德胜,等.快速均匀启动技术改善蒸汽辅助重力泄油预热效果[J].油气地质与采收率,2017,24(4):94-98.SHI Lanxiang,LI Xiuluan,MA Desheng,et al.Effect of fast and uniform start-up enhancement technology on preheating performance of SAGD[J].Petroleum Geology and Recovery Efficiency,2017,24(4):94-98.
    [12]DUSSEAULT M B,MORGENSTERN N R.Shear strength of Athabasca oil sands[J].Canadian Geotechnical Journal,1978,15:216-238.
    [13]DUSSEAULT M B,MORGENSTERN N R.Locked sands[J].Quarterly Journal of Engineering Geology,1979,3(1):1-24.
    [14]YUAN Y,YANG B,XU B.Fracturing in the oil sand reservoirs[R].SPE 149308,2011.
    [15]OLDAKOWSKI K.Stress induced permeability changes of Athabasca oil sands[D].Edmonton:University of Alberta,1994.
    [16]WONG R C.Mobilized strength components of Athabasca oil sand in triaxial compression.[J].Canadian Geotechnical Journal,1999,36(4):718-735.
    [17]MIKE C L,高贵生.蒸汽辅助重力驱与地质力学[J].国外石油动态,2004,6(2):13-24.MIKE C L,GAO Guisheng.Steam assisted gravity drainage and geomechanics[J].Oil Dynamics Abroad,2004,6(2):13-24.
    [18]YUAN Y,DOU S,ZHANG J,et al.Consideration of geomechanics for in-situ bitumen recovery in Xinjiang,China[R].SPE 165414,2013.
    [19]LIN B,CHEN S,YOU H,et al.Experimental investigation on dilation mechanism of ultra-heavy oil sands from Xinjiang oilfield[R].2015 International Society on Rock Mechanics Congress,2015.
    [20]LIN B,JIN Y,PANG H,et al.Experimental investigation on dilation mechanisms of land-facies Karamay oil sand reservoirs under water injection[J].Rock Mechanics and Rock Engineering,2016,49(4):1 425-1 439.
    [21]GAO Y,CHEN M,LIN B,et al.Experimental investigation on compressibility of Karamay oil sands under water injection[R].San Francisco,USA:51st US Rock Mechanics/Geomechanics Symposium,2017.
    [22]杨向同,王倩,刘洪涛,等.基于地质力学的裂缝性储层水平井井眼方位优化[J].断块油气田,2016,23(1):100-104.YANG Xiangtong,WANG Qian,LIU Hongtao,et al.Horizontal wellbore azimuth optimization of fractured reservoir based on geomechanics[J].Fault-Block Oil&Gas Field,2016,23(1):100-104.
    [23]廖新武,刘奇,李超,等.渤中25-1低渗透油田地应力分布特征及对开发的影响[J].地质力学学报,2015,21(1):30-37.LIAO Xinwu,LIU Qi,LI Chao,et al.Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J].Journal of Geomechanics,2015,21(1):30-37.
    [24]陈森,林伯韬,金衍,等.SAGD井微压裂储层渗透率变化规律研究[J].西南石油大学学报(自然科学版),2018,40(1):141-148.CHEN Sen,LIN Botao,JIN Yan,et al.Study on patterns of reservoir permeability during microfracturing of SAGD wells[J].Journal of Southwest Petroleum University(Science&Technology Edition),2018,40(1):141-148.
    [25]WANG X,CHALATURNYK R,HUANG H,et al.Permeability variations associated with various stress state during pore pressure injection[R].SPE 2015-768,2015.