我国生活垃圾焚烧过程的汞排放特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MERCURY EMISSION CHARACTERISTICS FROM MUNICIPAL SOLID WASTE INCINERATION IN CHINA
  • 作者:刘俐媛 ; 陈扬 ; 冯钦忠 ; 王俊峰 ; 李悦 ; 李震 ; 魏石豪 ; 付鑫
  • 英文作者:LIU Li-yuan;CHEN Yang;FENG Qin-zhong;WANG Jun-feng;LI Yue;LI Zhen;WEI Shi-hao;FU Xin;Beijing Advanced Sciences and Innovation Centre of CAS;
  • 关键词:生活垃圾 ; 焚烧 ; 汞排放清单
  • 英文关键词:municipal solid waste;;incineration;;mercury emission inventory
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中国科学院北京综合研究中心;
  • 出版日期:2019-04-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.250
  • 基金:国家重点研发计划“非常规污染物大气污染防治技术集成及产业化”(2016YFC0209204);; 国家自然基金“低温等离子体协同处理含汞废气和二噁英及活性剂增效机制”(11475211)
  • 语种:中文;
  • 页:HJGC201904025
  • 页数:6
  • CN:04
  • ISSN:11-2097/X
  • 分类号:134-139
摘要
基于联合国环境规划署(UNEP) 2017年发布的汞排放清单工具包,提出了我国生活垃圾焚烧过程汞排放清单的计算方法。我国生活垃圾平均汞含量为0. 743 mg/kg,2016年生活垃圾焚烧汞输入量为59. 78 t,2010—2016年生活垃圾焚烧过程的汞输入量增长了3. 66倍。采用"DS/SDS+ACI+FF"污控设施的生活垃圾焚烧过程中烟气、渗滤液、飞灰和炉渣的汞分布比例分别为62. 64%、0. 00%、35. 88%、1. 48%;采用"SNCR+SDS+ACI+FF"污控设施的生活垃圾焚烧过程中烟气、渗滤液、飞灰和炉渣的汞分布比例分别为21. 38%、0. 02%、78. 22%、0. 37%,脱硝设施的安装有利于生活垃圾焚烧厂对烟气汞的协同脱除。从2016年开始,大量汞随着飞灰进入固体废物中,生活垃圾焚烧过程汞的输出途径按输出量排序为焚烧飞灰>大气>焚烧炉渣。因此,生活垃圾焚烧飞灰的二次污染防治也应成为今后汞污染防治的关键环节。
        Based on the mercury emission inventory toolkit released by the United Nations Environment Programme( UNEP)in 2013,the calculation method for the mercury emission inventory of municipal solid waste incineration in China was proposed. The average mercury content of municipal solid waste is 0. 743 mg/kg in China,and the mercury input of municipal solid waste incineration was 59. 78 tons in 2016. During 2010—2016,the mercury input of municipal solid waste incineration increased by 3. 66 times. The mercury distribution ratio of flue gas,leachate,fly ash,and slag during the municipal solid waste incineration using the "DS/SDS + ACI + FF"pollution control facility was 62. 64%,0. 00%,35. 88%,and 1. 48%,respectively. The mercury distribution ratio of flue gas,leachate,fly ash,and slag during the municipal solid waste incineration using the "SNCR + SDS + ACI + FF " pollution control facility was 21. 38%,0. 02%,78. 22%,and 0. 37%,respectively. And the installation of denitration facilities was good for synergistic mercury removal of flue gas from municipal solid waste incineration plants. From 2016,a large amount of mercury entered the solid wastes along with fly ash,and the output pathways of mercury in the municipal solid waste incineration process was ranked as follow according by output:incineration fly ash > air > incineration slag. Therefore,secondary pollution prevention and control of municipal solid waste incineration fly ash will also be important in the prevention and control of mercury pollution in the future.
引文
[1]赵曦,黄艺,李娟.大型垃圾焚烧厂周边土壤重金属含量水平、空间分布、来源及潜在生态风险评价[J].生态环境学报,2015,24(6):1013-1021.
    [2]建设部.城市生活垃圾分类及其评价标准:CJJ/T 102—2004[S].北京:中国建筑工业出版社,2004.
    [3] Tian H Z,Gao J J,Lu L,et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China[J].Environmental Science&Technology,2012,46:10364-10371.
    [4] Zhang H,He P J,Shao L M. Fate of heave metals during municipal solid waste incineration in Shanghai[J]. Journal of Hazardous Materials,2008,156(1/2/3):365-373.
    [5] Li Z G,Feng X,Li P,et al. Emissions of air-borne mercury from five municipal solid waste landfills in Guiyang and Wuhan,China[J]. Atmospheric Chemistry and Physics,2010,10:3533-3364.
    [6]国家统计局.《中国统计年鉴》(2010—2016)[EB/OL].http://www.stats.gov.cn/tjsj/ndsj/
    [7]关于汞的水俣公约[EB/OL]. http://www. zhb. gov. cn/gkml/hbb/bgg/201708/t20170816_419736.htm
    [8] Pacyna E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000[J].Atmospheric Environment,2006(40):4048-4063.
    [9] Pirrone N,Cinnirella S,Feng X,et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J].Atmospheric Chemistry and Physics,2010(10):5951-5964.
    [10] Streets D G,Hao J M,Wu Y,et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment, 2005, 39(40):7789-7806.
    [11] Wu Y,Wang S,Streets D G,et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science and Technology,2006,40(17):5312-5318.
    [12] Abanades S,Flamant G,Gauthier D,et al. Development of an inverse method to identify the kinetics of heavy metal release during waste incineration in fluidized bed[J]. Hazard Mater,2005,124:19-26.
    [13] Yoo J I,Kim K H,Jang H N,et al. Emission characteristics of particulate matters and heavy metals from small incinerators and boilers[J]. Atmos Environ,2002,36:5057-5066.
    [14] United Nations Environment Program(UNEP). Toolkit for identification and quantification of mercury releases[EB/OL].2017. http://web. unep. org/chemicalsandwaste/what-we-do/technology-and-metals/mercury/toolkit-identification-and-quantific ation-mercury-releases.
    [15] Zhang L,Wang S X,Wang L,et al. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J]. Environmental Science and Technology,2015,49:3185-3194.
    [16] Shi D Z,Wu W X,Lu S Y,et al. Effect of MSW source classified collection on the emission of PCDDs/Fs and heavy metals from incineration in China[J]. Journal of Hazardous Materials,2008(153):685-694.
    [17] Chen L,Liu M,Fan R,et al. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta,South China[J]. Science of the Total Environment,2013,447(1):396.
    [18] Takahashi F,Kida A,Shimaoka T. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators[J]. Science of the Total Environment,2010,408(22):5472-5477.
    [19] Tian H Z,Wang Y,Xue Z G,et al. Trend and characteristics of atmospheric emissions of Hg,As,and Se from coal combustion in China,1980-2007[J]. Atmos Chem Phys,2010,10:11905-11919.
    [20] Hu D,Zhang W,Chen L,et al. Mercury emissions from waste combustion in China from 2004 to 2010[J]. Atmospheric Environment,2012,62(15):359-366.
    [21]苏海涛.我国生活垃圾焚烧行业大气汞排放特征研究[D].青岛:青岛科技大学,2016.
    [22]李春芸.北京市城区生活垃圾理化特性调查研究[D].北京:北京工业大学,2015.
    [23]何俊宝,姚庆军,韩志梅,等.天津滨海新区(海河以南)生活垃圾调查及分析[J].环境卫生工程,2010,18(2):7-10.
    [24]席玉英,李洪建,范文标.城市生活垃圾理化性质的动态特性分析[J].上海环境科学,2002,21(12):721-724,753.
    [25]贾悦,王震,夏苏湘,等.上海市生活垃圾重金属来源分析及污染风险评价[J].环境卫生工程,2015,23(4):31-34.
    [26]张厚坚,刘海娟,黄世清,等.城市生活垃圾焚烧处理过程中重金属迁移规律研究[J].环境工程学报,2013,7(11):4569-4574.
    [27]赵曦,李娟,黄艺,等.广东某大型城市生活垃圾焚烧厂9种重金属的迁移特征[J].环境污染与防治,2015,37(6):18-23.
    [28]段振亚,苏海涛,王凤阳,等.重庆市垃圾焚烧厂汞的分布特征与大气汞排放因子研究[J].环境科学,2016,37(2):459-465.
    [29]刘育辰.四川省城市生活垃圾特性及其重金属污染分析[D].四川:四川农业大学,2015.
    [30] Chen D Z, Christensen T H. Life-cycle assessment(EASEWASTE)of two municipal solid waste incineration technologies in China[J]. Waste Manage Res,2010,28:508-519.
    [31]郭一鑫.垃圾焚烧发电厂烟气处理系统设计研究[J].能源研究与利用,2005(6):17-20.
    [32] Mei Z,Shen Z,Zhao Q,et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J].Journal of Hazardous Materials,2008,152(2):721-729.
    [33] Yuan C S,Lin H Y,Wu C H,et al. Partition and size distribution of heavy metals in the flue gas from municipal solid waste incinerators in Taiwan[J]. Chemosphere,2005,59(1):135-145.
    [34]刘明,陈来国,许振成,等.珠三角地区生活垃圾焚烧厂汞的排放特征[J].环境科学学报,2013,33(11):2953-2958.
    [35]唐贵才,刘明,袁廷香.贵州城市生活垃圾焚烧过程中重金属分布和迁移特征[J].生态环境学报,2016,25(4):686-691.