Effects of Nitrogen Atmosphere on Microstructure and Mechanical Properties of Ti(C_(0.5)N_(0.5))-based Cermets
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Nitrogen Atmosphere on Microstructure and Mechanical Properties of Ti(C_(0.5)N_(0.5))-based Cermets
  • 作者:曹潜 ; 叶金文 ; LIU ; Ying ; PANG ; Jia ; QIU ; Weibin ; QIU ; Yuchong
  • 英文作者:CAO Qian;YE Jinwen;LIU Ying;PANG Jia;QIU Weibin;QIU Yuchong;School of Materials Science and Engineering, Sichuan University;
  • 英文关键词:Ti(C,N);;nitrogen;;microstructure;;low-pressure sintering
  • 中文刊名:WLGY
  • 英文刊名:武汉理工大学学报(材料科学版)(英文版)
  • 机构:School of Materials Science and Engineering, Sichuan University;
  • 出版日期:2019-04-15
  • 出版单位:Journal of Wuhan University of Technology(Materials Science)
  • 年:2019
  • 期:v.34;No.148
  • 基金:Funded by the National Key Research and Development Plan of China(No.2017YFB0305900);; the National Natural Science Foundation of China(No.51634006);; the Sichuan Provincial Science Research Program of China(No.1640STC30132/01)
  • 语种:英文;
  • 页:WLGY201902001
  • 页数:8
  • CN:02
  • ISSN:42-1680/TB
  • 分类号:5-12
摘要
The traditional low-pressure sintering was optimized for the preparation of Ti(C_(0.5)N_(0.5))-WC-Mo_2 C-TaC-Co-Ni cermets. Nitrogen was introduced into sintering system during different stages and with different pressures. The morphology and mechanical properties of cermets were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and measurements of transverse rupture strength(TRS), Vickers-hardness(HV) and fracture toughness(K_(IC)). The degree of denitrification is directly related to the amount of η phase. When nitrogen is introduced into the sintering system, the amount of observed η phase decreases. When nitrogen is introduced during solid-state sintering with appropriate pressure, the core-rim structure is well developed. And TRS and hardness get enhanced while toughness tends to be deteriorated with the nitrogen pressure increasing. When nitrogen is introduced after the sintering temperature reaches 1 350 ℃ or at higher pressures, the volume fraction of η phase increases. Sintered with a nitrogen pressure of 1.0 kPa during 1 200-1 350 ℃, the bulk materials possess enhanced mechanical properties, in which the TRS, HV, and K_(IC) are 1 966 MPa, 1 583 MPa, and 9.08 MPa·m~(1/2), respectively.
        The traditional low-pressure sintering was optimized for the preparation of Ti(C_(0.5)N_(0.5))-WC-Mo_2 C-TaC-Co-Ni cermets. Nitrogen was introduced into sintering system during different stages and with different pressures. The morphology and mechanical properties of cermets were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and measurements of transverse rupture strength(TRS), Vickers-hardness(HV) and fracture toughness(K_(IC)). The degree of denitrification is directly related to the amount of η phase. When nitrogen is introduced into the sintering system, the amount of observed η phase decreases. When nitrogen is introduced during solid-state sintering with appropriate pressure, the core-rim structure is well developed. And TRS and hardness get enhanced while toughness tends to be deteriorated with the nitrogen pressure increasing. When nitrogen is introduced after the sintering temperature reaches 1 350 ℃ or at higher pressures, the volume fraction of η phase increases. Sintered with a nitrogen pressure of 1.0 kPa during 1 200-1 350 ℃, the bulk materials possess enhanced mechanical properties, in which the TRS, HV, and K_(IC) are 1 966 MPa, 1 583 MPa, and 9.08 MPa·m~(1/2), respectively.
引文
[1]Ettmayer P,Kolaska H,Lengauer W,et al.Ti(C,N)Cermets-Metallurgy and Properties[J].Int.J.Refract.Met.Hard Mater.,1995(13):343-351
    [2]Zhang HA,Yan JH,Zhang X,et al.Properties of Titanium Carbonitride Matrix Cermets[J].Int.J.Refract.Met.Hard Mater.,2006(24):236-239
    [3]Zhang SY.Titanium Carbonitride-based Cermets:Processes and Properties[J].Mater.Sci.Eng.A,1993(163):141-148
    [4]Cardinal S,Malchère A,Garnier V,et al.Microstructure and Mechanical Properties of TiC-TiN Based Cermets for Tools Application[J].Int.J.Refract.Met.Hard Mater.,2009(27):521-527
    [5]Xu Q Z,Zhao J,Ai X,et al.Effect of Mo2C/(Mo2C+WC)Weight Ratio on the Microstructure and Mechanical Properties of Ti(C,N)-based Cermet Tool Materials[J].J.Alloy.Compd.,2015(649):885-890
    [6]Peng Y,Miao HZ,Peng ZJ.Development of TiCN-based Cermets:Mechanical Properties and Wear Mechanism[J].Int.J.Refract.Met.Hard Mater.,2013(39):78-89
    [7]Chao S,Liu N,Yuan YP,et al.Microstructure and Mechanical Properties of Ultrafine Ti(CN)-based Cermets Fabricated from Nano/submicron Starting Powders[J].Ceram.Int.,2005(31):851-862
    [8]Ahn SY,Kang S.Formation of Core-rim Structures in Ti(C,N)-WC-Ni Cermets via a Dissolution and Precipitation Process[J].J.Am.Ceram.Soc.,2000(83):1 489-1 494
    [9]Demoly A,Lengauer W,Veitsch C,et al.Effect of Submicron Ti(C,N)on the Microstructure and the Mechanical Properties of Ti(C,N)-based Cermets[J].Int.J.Refract.Met.Hard Mater.,2011(29):716-723
    [10]Qu J,Xiong WH,Ye DM,et al.Effect of WC Content on the Microstructure and Mechanical Properties of Ti(C0.5N0.5)-WC-Mo-Ni Cermets[J].Int.J.Refract.Met.Hard Mater.,2010(28):243-249
    [11]Janisch DS,Lengauer W,Eder A,et al.Nitridation Sintering of WC-Ti(C,N)-(Ta,Nb)C-Co Hardmetals[J].Int.J.Refract.Met.Hard Mater.,2013(36):22-30
    [12]Suzuki H,Hayashi K,Taniguchi Y,et al.The Beta-free Layer Formed Near the Surface of Vacuum-sintered WC-beta-Co Alloys Containing Nitrogen[J].T.Jpn.I.Met.,1981(22):758-764
    [13]Schwarzkopf M,Exner HE,Fischmeister HF.Kinetics of Compositional Modification of(W,Ti)C-WC-Co Alloy Surfaces[J].Mater.Sci.Eng.A,1988(105):225-231
    [14]Gustafson P,Ostlund A.Binder-phase Enrichment by Dissolution of Cubic Carbides[J].Int.J.Refract.Met.Hard Mater.,1994(12):129-136
    [15]Xu SZ,Wang HP,Zhou SZ.The Influence of TiN Content on Properties of Ti(CN)Solid Solution[J].Mater.Sci.Eng.A,1996(209):294-297
    [16]Zhao YJ,Zheng Y,Zhou W,et al.Characterization of Functionally Gradient Ti(C,N)-based Cermets Fabricated by Vacuum Liquid Phase Sintering and Nitriding Treatment During Cooling[J].Int.J.Refract.Met.Hard Mater.,2014(46):20-23
    [17]Shi ZM,Zhang DY,Chen S,et al.Effect of Nitrogen Content on Microstructures and Mechanical Properties of Ti(C,N)-based Cermets[J].J.Alloy.Compd.,2013(568):68-72
    [18]Andren H O.Microstructure Development During Sintering and Heat-treatment of Cemented Carbides and Cermets[J].Mater.Chem.Phys.,2001(67):209-213
    [19]Lengauer W,Dreyer K.Functionally Graded Hardmetals[J].J.Alloy.Compd.,2002(338):194-212
    [20]Kim S,Kang S.Change in the Surface Microstructure of Ti(C0.5N0.5)-20WC-10Ni-10Co Cermets During Sintering in a Nitrogen Atmosphere[J].J.Am.Cera.Soc.,2007(90):2 974-2 979
    [21]Kang Y,Kang S.The Surface Microstructure of TiC-(Ti,W)C-WC-Ni Cermets Sintered in a Nitrogen Atmosphere[J].Mater.Sci.Eng.A,2010(527):7 241-7 246
    [22]He X,Ye JW,Liu Y,et al.Phase Transition and Microstructure Evolution During the Carbothermal Preparation of Ti(C,N)Powders in an Open System[J].Adv.Powder Technol.,2010(21):448-451
    [23]Findenig G,Buchegger C,Lengauer W,et al.Investigation of the Main Influencing Parameters on the Degassing Behavior of Titanium Carbonitrides Using Mass Spectrometry[J].Int.J.Refract.Met.Hard Mater.,2017(63):38-46
    [24]Kang S.Some Issues in Ti(CN)-WC-TaC Cermets[J].Mater.Sci.Eng.A,1996(209):306-312
    [25]Schubert WD,Neumeister H,Kinger G,et al.Hardness to Toughness Relationship of Fine-grained WC-Co Hardmetals[J].Int.J.Refract.Met.Hard Mater.,1998(16):133-142
    [26]Wang J,Liu Y,Ye JW,et al.The Fabrication of Multi-core Structure Cermets Based on(Ti,W,Ta)CN and TiCN Solid-solution Powders[J].Int.J.Refract.Met.Hard Mater.,2017(64):294-300
    [27]Chicardi E,Córdoba JM,Sayagués MJ,et al.Absence of the Corerim Microstructure in TixTa1-xCyN1-y-based Cermets Developed from a Pre-sintered Carbonitride Master Alloy[J].Int.J.Refract.Met.Hard Mater.,2012(33):38-43
    [28]Zhang WB,Du Y,Peng YB,et al.Experimental Investigation and Simulation of the Effect of Ti and N Contents on the Formation of Fccfree Surface Layers in WC-Ti(C,N)-Co Cemented Carbides[J].Int.J.Refract.Met.Hard Mater.,2013(41):638-647