二维HZSM-5纳米片的合成及催化苯与稀乙烯烷基化制乙苯
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Catalytic Performance of 2D HZSM-5 Nano-sheet for Ethylbenzene Production from Benzene with Dilute Ethylene
  • 作者:边凯 ; 候章贵 ; 段欣瑞 ; 李孝国 ; 常洋 ; 曹辉 ; 张安峰 ; 郭新闻
  • 英文作者:BIAN Kai;HOU Zhanggui;DUAN Xinrui;LI Xiaoguo;CHANG Yang;CAO Hui;ZHANG Anfeng;GUO Xinwen;State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology;CNOOC Research Institute of Refining and Petrochemicals;
  • 关键词:HZSM-5分子筛 ; 酸催化 ; 乙苯 ; 苯与乙烯烷基化
  • 英文关键词:HZSM-5 zeolite;;Acid catalysis;;Ethylbenzene;;Alkylation of benzene with ethylene
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:大连理工大学化工学院精细化工国家重点实验室;中海油炼油化工科学研究院;
  • 出版日期:2019-04-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 语种:中文;
  • 页:GDXH201904024
  • 页数:9
  • CN:04
  • ISSN:22-1131/O6
  • 分类号:178-186
摘要
采用晶种导向的方法,以四丙基溴化铵为模板剂,乙胺为矿化剂,硅溶胶为硅源,氯化铝为铝源,60 nm Silicate-1为晶种,于水热条件下合成了具有不同b轴厚度及硅铝比的二维HZSM-5纳米片.采用不同碱源对分子筛进行碱处理,其中经NaOH处理以及NaOH与四丙基氢氧化铵(TPAOH)联合处理得到了二维多级孔HZSM-5纳米片.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、Ar吸附-脱附、氨-程序升温脱附(NH3-TPD)、X射线荧光光谱(XRF)和X射线光电子能谱(XPS)等手段对催化剂的结构和酸性进行了表征,考察了硅铝比和b轴厚度对催化苯与稀乙烯烷基化反应的影响.研究结果表明,在360℃,1. 4 MPa,苯烯比为6,乙烯体积分数为15%,乙烯质量空速(WHSV)为1. 5 h-1的反应条件下,随着硅铝原子比从80提高至200,苯的转化率略有下降,乙基选择性保持在99. 2%以上,但甲苯及二甲苯选择性分别从0. 11%和0. 09%均下降至0. 05%.将不同b轴厚度的HZSM-5纳米片催化剂在苯烯比为1的条件下进行实验发现,硅铝比为160的大晶粒HZSM-5催化剂失活严重,反应50 h时苯的转化率从34. 6%下降至8%,二甲苯选择性达到0. 37%;而b轴厚度为100 nm的二维HZSM-5纳米片作为催化剂时苯的转化率稳定在44. 0%,乙基选择性为94. 8%,二甲苯选择性下降至0. 22%,并在100 h内保持反应性能不变.
        2D HZSM-5 nano-sheet with different b-axis thickness and Si/Al atom ratios were synthesized by seed-induced method under the hydrothermal conditions,using tetrapropylammonium bromide as the template,ethylamine as the mineralizer,silica sol as the silicon source,aluminium chloride as the aluminium source and the 60 nm silicate-1 as the crystal seed,respectively. And the 2 D hierarchical HZSM-5 nano-sheet were obtained by alkaline treatment with different sources, including NaOH treatment, tetrapropylammonium hydroxide( TPAOH) treatment,and NaOH with TPAOH co-alkaline treatment. The structure and acidity of the samples were characterized by means of X-ray diffraction( XRD),scanning electron microscopy( SEM),transmission electron microscopy( TEM),Ar adsorption-desorption,ammonia temperature-programmed desorption( NH_3-TPD),X-ray fluorescence( XRF) and X-ray photoelectron spectroscopy( XPS). The effects of Si/Al atom ratio and the thickness of b-axis on the alkylation of benzene with dilute ethylene were investigated.The research results show that,under the reaction conditions of 360 ℃,1. 4 MPa,the molar ratio of benzene/ethylene is 6,and the concentration and weight hourly space velocity( WHSV) of ethylene were 15% and 1. 5 h~(-1),the conversion of benzene decreased slightly with the increasing of Si/Al atom ratio,the ethyl selectivity maintained above 99. 2%,while the selectivity of toluene and xylene decreased from 0. 11% and 0. 09%to 0. 05%,respectively. The HZSM-5 catalysts with different b-axis thickness were evaluated under the condition of benzene/ethylene is 1,the microscale HZSM-5 with the high silica content deactivated seriously. The conversion of benzene declined from 34. 6% to 8% during 50 h,and the ethyl selectivity was 88%. While the benzene conversion of 2D HZSM-5 nano-sheet with same Si/Al atom ratio was stable at 44. 0%,the ethyl selectivity reached to 94. 8%,and the xylene selectivity reduced from 0. 37% to 0. 22%.
引文
[1]Sun L.P.,Guo X.W.,Liu M.,Wang X.S.,Appl.Catal.A,2009,355,184-191
    [2]Sun L.P.,Guo X.W.,Xiong G.,Wang X.S.,Catal.Commun.,2012,25,18-21
    [3]Degnan Jr.F.T.,Smith C.M.,Venkat C.R.,Appl.Catal.A,2001,221,283-294
    [4]Sun L.P.,Liu C.,Qiao Q.,Guo X.W.,J.Taiwan.Inst.Chem.E,2016,64,9-15
    [5]Ding S.S.,Petrochem.Tech.,1986,21-24(丁叔圣.石油化工,1986,21-24)
    [6]Yang W.M.,Wang Z.D.,Sun H.M.,Zhang B.,Chin.J.Catal.,2016,37,16-26(杨为民,王振东,孙洪敏,张斌.催化学报,2016,37(1),16-26)
    [7]Groen J.C.,Moulijn J.A.,Pérez-Ramírez J.,J.Mater.Chem.,2006,16,2121-2131
    [8]Corma A.,Chem.Rev.,1995,95,559-614
    [9]Corma A.,Chem.Rev.,1997,97,2373-2420
    [10]Smit B.,Maesen T.L.M.,Chem.Rev.,2008,108,4125-4184
    [11]Janda A.,Bell A.T.,J.Am.Chem.Soc.,2013,135,19193-19207
    [12]Kida T.,Kojima K.,Ohnishi H.,Guan G.,Yoshida A.,Ceram.Int.,2004,30,727-732
    [13]Wang Q.X.,Cai G.Y.,Huang Z.X.,Liu Y.S.,Zhang S.R.,Wei Y.Z.,Li F.,Chin.J.Catal.,1990,V11,236-241(王清遐,蔡光宇,黄祖贤,刘玉生,张淑蓉,魏永祯,李峰.催化学报,1990,V11,236-241)
    [14]Ma Y.H.,Cai D.L.,Li Y.R.,Wang N.,Muhammad U.,Carlsson A.,Tang D.,Qian W.Z.,Wang Y.,Su D.S.,Wei F.,RSC Adv.,2016,6,74797-74801
    [15]Boltz M.,Losch P.,Louis B.,Rioland G.,Tzanis L.,Daou T.J.,RSC Adv.,2014,4,27242-27249
    [16]Liu Y.,Zhou X.,Pang X.,Jin Y.,Meng X.J.,Zheng X.,Gao X.,Xiao F.S.,Chem.Cat.Chem.,2013,5,1517-1523
    [17]Verboekend D.,Thomas K.,Milina M.,Mitchell S.,Pérez-Ramírez J.,Gilson J.P.,Catal.Sci.Tech.,2011,1,1331
    [18]Choi M.,Na K.,Kim J.,Sakamoto Y.,Terasaki O.,Ryoo R.,Nature,2009,461,246-249
    [19]Zhang L.,Song Y.,Li G.,Zhang Q.,Zhang S.,Xu J.,Deng F.,Gong Y.,RSC Adv.,2015,5,61354-61363
    [20]Valtchev V.,Majano G.,Mintova S.,Pérez-Ramírez J.,Chem.Soc.Rev.,2013,42,263-290
    [21]Moller K.,Bein T.,Chem.Soc.Rev.,2013,42,3689-3707
    [22]Groen J.C.,Moulijn J.A.,Pérez-Ramírez J.,Micropor.Mesopor.Mat.,2005,87,153-161
    [23]Lopez-Orozco S.,Inayat A.,Schwab A.,Selvam T.,Schwieger W.,Adv.Mater.,2011,23,2602-2615
    [24]Zhang H.,Zhao Y.,Zhang H.,Wang P.,Shi Z.,Mao J.,Zhang Y.,Tang,Y.,Chemistry,2016,22,7141-7151
    [25]Groen J.C.,Maldonado L.,Berrier E.,Brückner A.,Moulijn J.A.,Pérez-Ramírez J.,J.Phys.Chem.B,2006,110,20369-20378
    [26]Groen J.C.,Zhu W.,Brouwer S.,Huynink S.J.,Kapteijn F.,Moulijn J.A.,Pérez-Ramírez J.,J.Am.Chem.Soc.,2007,129,355-360
    [27]Zhou J.,Teng J.,Ren L.,Wang Y.,Liu Z.,Liu W.,Yang W.,Xie Z.K.,J.Catal.,2016,340,166-176
    [28]Yang W.M.,Sun H.M.,Shanghai Chemical Industry,2002,16-18(杨为民,孙洪敏.上海化工,2002,16-18)
    [29]Zhang W.P.,Bao X.H.,Guo X.W.,Wang X.S.,Catal.Lett.,1999,60,89-94
    [30]AbellóS.,Bonilla A.,Pérez-Ramírez J.,Appl.Catal.A,2009,364,191-198