基于气象卫星的青藏高原低涡识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recognition Method of the Tibetan Plateau Vortex Based on Meteorological Satellite Data
  • 作者:任素玲 ; 方翔 ; 卢乃锰 ; 刘清华 ; 李云
  • 英文作者:Ren Suling;Fang Xiang;Lu Naimeng;Liu Qinghua;Li Yun;National Satellite Meteorological Center;Heavy Rain and Drought-flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province;
  • 关键词:青藏高原低涡 ; 卫星云图 ; 青藏高原低涡活动频率 ; 低涡路径
  • 英文关键词:Tibet Plateau vortex;;satellite images;;Tibet Plateau vortex activity frequency;;vortex path
  • 中文刊名:YYQX
  • 英文刊名:Journal of Applied Meteorological Science
  • 机构:国家卫星气象中心;高原与盆地暴雨旱涝灾害四川省重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:应用气象学报
  • 年:2019
  • 期:v.30
  • 基金:公益性行业(气象)科研专项(GYHY2013060171);; 高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金(SZKT2016001);; 国家自然科学基金重大研究计划项目(91637105)
  • 语种:中文;
  • 页:YYQX201903008
  • 页数:15
  • CN:03
  • ISSN:11-2690/P
  • 分类号:91-105
摘要
利用长时间序列气象卫星及多源数据,研究青藏高原低涡综合识别方法,完成低涡数据集并与青藏高原低涡年鉴中低涡位置、路径和分布进行对比分析。研究表明:卫星识别多年平均低涡分布存在两个高值区,分别位于西藏的中北部和青海西南部及青藏高原西部,在有探空站的青藏高原东部(90°E以东),卫星识别低涡高值区和年鉴数据吻合,冬半年,卫星识别低涡活动明显高于年鉴,主要为青藏高原西部低涡活动引起,逐年及2008年低涡路径对比也显示,有探空站区域卫星识别低涡和年鉴具有较好的一致性,表明卫星识别低涡在青藏高原东部地区的可信性;2015年青藏高原中西部新增3个探空站,年鉴中90°E以西低涡约占全年低涡总数量的22%,该区域卫星识别低涡和年鉴一致性较高,表明卫星识别低涡在高原中西部的可信性。因此,卫星识别低涡与年鉴低涡在有探空站区域有较好的一致性,可对年鉴中青藏高原东部低涡源地进行追踪,又可识别青藏高原中西部尤其是活跃于冬半年的低涡,是青藏高原年鉴低涡数据的有效补充。
        Based on long-term meteorological satellite data and multi-source observation and reanalysis datasets,the recognition method of the Tibetan Plateau vortex is studied. Based on the method, the Plateau weather analysis software is developed and the vortex dataset of almost 30 years is established. The location,track and distribution of low vortexes based on yearbooks and satellite are compared and the origin region, track and seasonal distribution of low vortexes are studied. Results show that the height and wind fields over the Tibetan Plateau of NCEP/NCAR reanalysis dataset are the most consistent with sounding data which can be used to identify the Tibetan Plateau vortex. Climate vortexes from satellite show there are two vortex activity centers located in the east and the west of the Plateau, respectively. In the eastern part of the Plateau with several sounding stations, high value vortex activity centers are coincided with which from yearbooks(east of 90°E). In winter, the frequency of vortex activity from satellite data is obviously higher than that from yearbooks caused by the activity of vortex in the western part of the Plateau. The analysis of annual vortex tracks also show that vortexes from the satellite recognition are in good agreement with that from yearbooks except for the central, western and southern parts of the Plateau without sounding stations, which indicates that vortex data from the satellite recognition is feasible in the eastern part of the Plateau. After three new sounding stations are built in the central and western part of the Plateau in 2015,vortexes in yearbook show there are several vortexes to the west of 90°E near new stations which account for about 22% of the total number in 2015. The distribution of vortex from satellite and yearbook is accordant near three new stations which indicates the credibility of vortex data from the satellite recognition in the central and western part of the Plateau. Therefore, vortexes from satellite recognition are consistent with vortexes from yearbooks when there are sounding stations and it also can be used to track the origin of the vortex. At the same time, it also can identify vortexes occurring in western part of the Plateau, especially in winter. It is an effective supplement to the low vortex yearbook datasets.
引文
[1]叶笃正,高由禧.青藏高原气象学.北京:科学出版社,1979.
    [2]罗四维,何梅兰,刘晓东.关于夏季青藏高原低涡的研究.中国科学(B辑),1993,23(7):778-784.
    [3]李国平.青藏高原动力气象学.北京:气象出版社,2007.
    [4]李跃清.第三次青藏高原大气科学试验的观测基础.高原山地气象研究.2011,31(3):77-82.
    [5]徐祥德,陈联寿.青藏高原大气科学试验研究进展.应用气象学报,2006,17(6):756-772.
    [6]王鑫,李跃清,郁淑华,等.青藏高原低涡活动的统计研究.高原气象,2009,28(1):64-71.
    [7]陈乾.青藏高原地区500 hPa低涡的天气气候分析//兰州天动会议技术材料.西宁:青海人民出版社,1964:27-29.
    [8]吴永森.高原夏季500 hPa低涡的初步研究//青海省气象论文集(二),1964:18-19.
    [9]刘富明,伏梅娟.东移的青藏高原低涡的研究.高原气象,1985:5(2):125-134.
    [10]高文良,郁淑华.高原低涡东移出高原的平均环流场分析.高原气象,2007,26(1):206-212.
    [11]郁淑华,高文良.高原低涡移出高原的观测事实分析.气象学报,2006,64(3):392-399.
    [12]郁淑华,高文良,顾清源.近年来影响我国东部洪涝的高原东移涡环流场特征分析.高原气象,2007:26(3):466-475.
    [13]郁淑华,肖玉华,高文良.冷空气对高原低涡移出青藏高原的影响.应用气象学报,2007,18(6):737-747.
    [14]郁淑华,高文良,肖玉华.冷空气对两例高原低涡移出高原影响的分析.高原气象,2008,27(1):96-103.
    [15]郁淑华,高文良.彭骏.青藏高原低涡活动对降水影响的统计分析.高原气象,2012,31(3):295-604.
    [16]齐鹏程,郑栋,张义军,等.青藏高原闪电和降水气候特征及时空对应关系.应用气象学报,2016,27(4):488-497.
    [17]孟青,樊鹏磊,郑栋,等.青藏高原那曲地区地闪与雷达参量关系.应用气象学报,2018,29(5):524-533.
    [18]赵平,袁溢.2014年7月14日高原低涡降水过程观测分析.应用气象学报,2017,28(5):532-543.
    [19]李国平,卢会国,黄楚惠,等.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响.大气科学,2016:40(1):131-141.
    [20] Zhang Pengfei,Li Guoping,Fu Xiouhua,et al. Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation. Mon Wea Rev,2014,142:290-300.
    [21]钱正安等(青藏高原气象科学研究拉萨会战组).夏半年500 hPa青藏高原低涡切变线的研究.北京:科学出版社,1981.
    [22]许健民,郑新江,徐欢,等.GMS-5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征.应用气象学报,1996,7(2):246-251.
    [23]江吉喜,项续康.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报,1996,7(4):473-478.
    [24]徐祥德,陶诗言,王继志,等.青藏高原一季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系.气象学报,2002,60(3):257-266.
    [25]林志强,周振波,假拉.高原低涡客观识别方法及其初步应用.高原气象,2013:32(6):1580-1588.
    [26] Yuichiro O,Hirohiko I. Estimation of land surface temperature over the Tibetan Plateau using GMS data. J Appl Meteor,2004,43:548-561.
    [27]杨军.气象卫星及其应用.北京:气象出版社,2012.
    [28] Kalnay E, Kanamitsu M,Kistler R,et al. The NCEP/NCAR40-year re-analysis project.Bull Amer Meteor Soc, 1996,7:437-471.
    [29] Kobayashi C,Iwasaki T. Brewer-Dobson circulation diagnosed from JRA-55. J Geophys Res Atmos, 2016,121,DOI:10.1002/2015JD023476.
    [30] Owerns R G, Hewson T D. ECMWF Forecast User Guide.Reading:ECMWF,2018,DOI:10. 21957/mIcs7h.
    [31]李跃清,郁淑华,彭骏.青藏高原低涡切变线年鉴.北京:科学出版社,2016.
    [32] Zhao Ping,Xu Xiangde,Chen Fei,et al. The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull Amer Meteor Soc,2018,99:757-776.
    [33]除多,洛桑曲珍,杨志刚,等.1981-2010年青藏高原降雪日数时空变化特征.应用气象学报,2017,28(3):292-305.