环鄱阳湖区农田土壤有机碳影响因素空间分布格局分析及制图研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution and Mapping of Influencing Factors of Farmland Soil Organic Carbon in the Poyang Lake Region
  • 作者:邹润彦 ; 周宏冀 ; 郭熙 ; 但承龙 ; 吕添贵 ; 李洪义
  • 英文作者:ZOU Run-yan;ZHOU Hong-ji;GUO Xi;DAN Cheng-long;LV Tian-gui;LI Hong-yi;Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics;Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province;
  • 关键词:数字土壤制图 ; 农田土壤有机碳 ; 地理加权回归 ; 空间分布格局 ; 环鄱阳湖区
  • 英文关键词:digital soil mapping;;farmland soil organic carbon;;geographically weighted regression Kriging;;Poyang Lake area
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:江西财经大学旅游与城市管理学院土地资源管理系;江西省鄱阳湖流域农业资源与生态重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金(41561049,71864016);; 江西省杰出青年科学基金(20171BCB23049);; 江西省教育厅科技项目(GJJ150481,GJJ160460);; 教育部人文社科项目(17YJC630100);; 江西省研究生创新课题(YC2017-S211)
  • 语种:中文;
  • 页:CJLY201905012
  • 页数:11
  • CN:05
  • ISSN:42-1320/X
  • 分类号:121-131
摘要
利用地理加权回归(Geographically Weighted Regression,GWR)模型,对环鄱阳湖区农田土壤有机碳(Soil Organic Carbon, SOC)影响因子的空间分布格局进行系统分析,结合克里格插值方法进行土壤有机碳制图研究,同时综合比较了地理加权回归方法(GWRK)与回归克里格(Return Kriging,RK)方法在预测土壤有机碳储量结果之间存在的差异。结果表明:(1)根据Pearson相关性分析结果,所选取的各环境影响因素均与土壤有机碳具有相关性(P<0.01)。(2)通过GWR模型对各影响因素空间分布格局的分析,发现SOC与坡向、年均温度和年均降水呈正相关,与坡度、植被覆盖度呈负相关。(3)GWRK法得到的土壤有机碳含量变化范围为6.35~31.93g·kg~(-1),接近采样点的实测值;RK方法得到的土壤有机碳含量变化范围在7.41~25.76 g·kg~(-1),总体空间分布特征与GWRK的结果相似,但RK方法预测的结果较为平滑,与SOC储量实际状况还存在一定差异。(4)GWR的拟合优度R~2(0.50)明显高于RK中的R~2(0.20); GWRK方法的均方根误差(RMSE)为4.58,小于RK方法的均方根误差5.35,且通过GWRK方法得出的预测结果在制图上结合采样点位置信息,使成图效果更加精细。
        This study systematically analyzed the spatial distribution of the influencing factors of farmland soil organic carbon(SOC) in the Poyang Lake region by using the geographically weighted regression(GWR) model, and combined kriging interpolation algorithm to produce SOC map. The GWR Kriging(GWRK) and kriging(RK) methods were compared to identify the difference in predicting the SOC reserves. The results showed that: 1) The selected environmental influencing factor was relevant with SOC(P<0.01) according to Pearson correlation analysis; 2) There was a positive correlation between SOC and aspect, annual average temperature, and annual average precipitation, while a negative correlation was observed between SOC and gradient, vegetation coverage; 3) The values of SOC content ranged from 6.35 to 31.93 g·kg~(-1) using the method of GWRK and approached to the measured values of sampling points. The values of SOC content ranged from 7.41 to 25.76 g·kg~(-1) using the method of RK, and the overall spatial distribution characteristics were similar to the results of GWRK; however, the predicting results of RK were relatively smooth, which differed from the actual state of SOC reserves; 4) The goodness of fit of R~2 in GWRK(0.50) was apparently higher than that in RK(0.20). The root-mean-square error of GWR is 4.58, which was less than the RK(5.35) of RMSE. Additionally, the predicting outcomes obtained using the GWRK reflected the positional information of sampling points, which could make the mapping elaborate.
引文
[1] 孙文娟,黄耀,张稳,等.农田土壤固碳潜力研究的关键科学问题[J].地球科学进展,2008,23(9):996-1004.SUN W J,HUANG Y,ZHANG W,et al.Key issues on soil carbon sequestration potential in agricultural soils [J].Advance in Earth Science,2008,23(9):996-1004.
    [2] 魏小波,何文清,黎晓峰,等.农田土壤有机碳固定机制及其影响因子研究进展[J].中国农业气象,2010,31(4):487-494.WEI X B,HE W Q,LI X F,et al.Review on the mechanism of soil organic carbon sequestration and its influence factors in cropland soils [J].Chinese Journal of Agrometeorology,2010,31(4):487-494.
    [3] LIN Z B,ZHANG R D.Dynamics of soil organic carbon underuncertain climate change and elevated atmospheric CO2[J].Pedosphere,2012,22(4):489-496.
    [4] YANG W,CORDOBA P,GIORGIO C,et al.Influence of a CO2 long term exposure on the mobilisation and speciation of metals in soils [J].Chemie and Geoecology,2015,75(4):475-482.
    [5] 张国盛,黄高宝.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):351-357.ZHANG G S,HUANG G B.Soil organic carbon sequestration potential in cropland [J].Acta Ecologica Sinica,2005,25(2):351-357.
    [6] 黎孔清,陈俭军,马豆豆.基于STIRPAT和GM(1,1)模型的湖南省农地投入碳排放增长机理及趋势预测[J].长江流域资源与环境,2018,27(2):345-352.LI K Q,CHEN J J,MA D D.Growth mechanism and trend forecast of carbon emission from farmland inputs in hunan province based on stirpat and GM (1,1) Model [J].Resources and Environmengt in the Yangtze Basin,2018,27(2):345-352.
    [7] 王霖娇,李瑞,盛茂银.典型喀斯特石漠化生态系统土壤有机碳时空分布格局及其与环境的相关性[J].生态学报,2017,37(5):1367-1378.WANG L J,LI R,SHENG M Y.Distribution of soil organic carbon related to environmental factors in typical rocky desertification ecosystems [J].Acta Ecologica Sinica,2017,37(5):1367-1378.
    [8] SCHILLACI C,ACUTIS M,LOMBARDO L.Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region:The role of land use,soil texture,topographic indices and the influence of remote sensing data to modelling[J].Science of the Total Environment,2017,601-602:821.
    [9] 江叶枫,郭熙,叶英聪,等.基于辅助变量和神经网络模型的土壤有机质空间分布模拟[J].长江流域资源与环境,2017,26(8):1150-1158.JIANG Y F,GUO X,YE Y C,et al.Simulation of distribution of soil organic matter based on auxiliary variables and neural network model [J].Resources and Environment in the Yangtze Basin,2017,26(8):1150-1158.
    [10] 文雯,周宝同,汪亚峰,等.基于辅助环境变量的土壤有机碳空间插值——以黄土丘陵区小流域为例[J].生态学报,2013,33(19):6389-6397.WENG W,ZHOU B T,WANG Y F,et al.Soil organic carbon interpolation based on auxiliary environmental covariates:A case study at small watershed scale in Loess Hilly region [J].Acta Ecologica Sinica,2013,33(19):6389-6397.
    [11] ZHOU Y,BISWAS A,MA Z Q,et al.Revealing the scale~ specific controls of soil organic matter at large scale in Northeast and North China Plain[J].Geoderma,2016(271):71-79.
    [12] LIU F,ROSSITER D G,SONG X D,et al.A similarity-based method for three-dimensional prediction of soil organic matter concentration[J].Geoderma,2016(263):254-263.
    [13] LIU F,ZHANG G L,SUN Y J,et al.Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape[J].Soil Science Society of America Journal,2013,77(4):1241-1253.
    [14] 王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.WANG S Q,ZHOU C H,LI K R,et al.Analysis on spatial distribution character istics of soil organic carbon reservoir in China[J].Acta Geographica Sinica,2000,55(5):533-544.
    [15] WIESMEIER M,HUBNER R,BARTHOLD F,et al.Amount,distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)[J].Agriculture Ecosystems & Environment,2013,176(1765):39-52.
    [16] 罗勇,王小国,高美荣,等.川中丘陵典型农田土壤有机碳储量及空间分布特征[J].长江流域资源与环境,2015,24(4):669-675.LUO Y,WANG X G,GAO M R,et al.Stocks and spatial characteristics of top soil organic carbon of cropland in the typical purple soil area of hilly areas in centrel Sichuang[J].Resources And Environmengt In The Yangtze Basin,2015,24(4):669-675.
    [17] WANG T,KANG F,HAN H,et al.Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt.Taiyue,China[J].Catena,2016(155):41-52.
    [18] 许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究,2009,28(3):601-612.XU X W,PAN G X,WANG Y L,et al.Research of changing characteristics and control factors of farmland topsoil organic carbon in China[J].Geographical Research,2009,28(3):601-612.
    [19] SONG X D,BRUS D J,LIU F,et al.Mapping soil organic carbon content by geographically weighted regression:A case study in the Heihe River Basin,China[J].Geoderma,2016(261):11-22.
    [20] KUMAR S,LAL R,LIU D.A geographically weighted regression kriging approach for mapping soil organic carbon stock[J].Geoderma,2012,s 189-190(6):627-634.
    [21] 杨顺华,张海涛,郭龙,等.基于回归和地理加权回归Kriging的土壤有机质空间插值[J].应用生态学报,2015,26(6):1649-1656.YANG S H,ZHANG H L,GUO L,et al.Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging[J].Chinese Journal of Applied Ecology,2015,26(6):1649-1656.
    [22] 胡春华,蒋建华,周文斌.环鄱阳湖区农家菜地土壤重金属风险评价及来源分析[J].地理科学,2012,32(6):771-776.HU C H,JIANG J H,ZHOU W B.Risk evaluation and sources analysis of heavy metals in vegetable field soil of rural area around Poyang Lake[J].Scientia Geographica Sinica,2012,32(6):771-776.
    [23] 李洪义.鄱阳湖生态经济区城乡格局优化与节约集约用地研究[M].北京:北京理工大学出版社,2014.
    [24] 黄魏,罗云,汪善勤,等.基于传统土壤图的土壤—环境关系获取及推理制图研究[J].土壤学报,2016,53(1):72-80.HUANG W,LUO Y,WANG S Q,et al.Knowledge of soil-landscape model obtain from a soil map and mapping[J].Acta Pedologica Sinica,2016,53(1):72-80.
    [25] 张忠启,于法展.土壤类型信息在土壤有机碳空间预测中的应用研究[J].中国农学通报,2013,29(11):139-144.ZHANG Z Q,YU F Z.Study on the application of soil type information in spatial prediction of soil organic carbon[J].Chinese Agricultural Science Bulletin,2013,29(11):139-144.
    [26] GRIFFITH D A.Spatial~ filtering~ based contributions to a critique of geographically weighted regression (GWR)[J].Environment and Planning A,2008,40(11):2751-2769.
    [27] 王雅楠,赵涛.基于GWR模型中国碳排放空间差异研究[J].中国人口·资源与环境,2016,26(2):27-34.WANG Y N,ZHAO T.Study on spatial difference of carbon emissions in China based on GWR model[J].China Population Resources and Environment,2016,26(2):27-34.
    [28] 张珍明,周运超,田潇,等.喀斯特小流域土壤有机碳空间异质性及储量估算方法[J].生态学报,2017,37(22):7647-7659.ZHANG Z M,ZHOU Y C,TIAN X,et al.Study on spatial heterogeneity and reserve estimation of soil organic carbon in a small karst catchment[J].Acta Ecologica Sinica,2017,37(22):7647-7659.
    [29] HUANG B,SUN W,ZHAO Y,et al.Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices[J].Geoderma,2007,139(3-4):336-345.
    [30] 唐海明,程凯凯,肖小平,等.不同冬季覆盖作物对双季稻田土壤有机碳的影响[J].应用生态学报,2017,28(2):465-473.TANG H M ,CHENG K K,XIAO X P,et al.Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field[J].Chinese Journal of Applied Ecology,2017,28(2):465-473.