先进高强钢微观组织调控研究现状及发展趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research status and development trend of microstructure control of advanced high strength steel
  • 作者:李大赵 ; 庄治华 ; 申丽媛 ; 韩雨 ; 孟传峰
  • 英文作者:Li Dazhao;Zhuang Zhihua;Shen Liyuan;Han Yu;Meng Chuanfeng;School of Material Science and Engineering,North University of China;Technology Center,Taiyuan Iron and Steel (Group) Crop;
  • 关键词:先进高强钢 ; 微观组织 ; 微观缺陷 ; 强化机制 ; 相变
  • 英文关键词:advanced high strength steel;;microstructure;;microdefect;;strengthening mechanism;;phase transformation
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:中北大学材料科学与工程学院;太原钢铁(集团)有限公司技术中心;
  • 出版日期:2019-05-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.501
  • 基金:国家自然科学基金(51201154);; 山西省自然科学基金(201801D121105)
  • 语种:中文;
  • 页:JSRC201905007
  • 页数:6
  • CN:05
  • ISSN:11-1860/TG
  • 分类号:19-24
摘要
钢的相变复杂和多样性使其具备了不断提升性能的潜力,因此微观组织的设计、控制及对性能影响机制的研究至关重要。特别是在汽车、工程机械、船舶以及建筑行业对钢的性能不断改进和提升的强烈需求下,促进更多学者致力于钢强度提升的研究。研究低成本高强钢在动态和多因素耦合作用下的相变规律和引发的性能变化,具有重要的理论和实际意义。本文对国内外低合金高强钢的相关研究进行了总结和分析,描述了先进高强钢发展历史和趋势,从微观缺陷的角度分析了强化机制发挥作用的方式,初步阐明了钢中微观组织与力学性能的关系,探究了热变形和后续冷却对钢相变的影响规律,提出了先进高强钢发展过程中首要解决的问题。
        Complexity and diversity of phase transformation of steel make it have the potential to continuously improve the performance.Therefore,the design and control of microstructure and the study of mechanism affecting the performance are very crucial.Particularly,in automobile,engineering machinery,shipbuilding and construction industries,there is a strong demand for the continuous improvement of steel properties,which promotes more scholars to work on the enhancement of steel strength.It is of great theoretical and practical significance to investigate the phase transformation laws and the corresponding property variation of low carbon high strength steel under dynamic and multi-factor coupling effects.This paper summarizes and analyzes the relevant investigations on low alloy high strength steel at home and abroad,describes the history and trends of advanced high strength steel,and analyzes the working mode of strengthening mechanism from the perspective of microdefect.It preliminarily clarifies the relationship between the microstructure and mechanical properties in steel and explores the effect of hot deformation and the subsequent cooling on steel phase transformation,proposing the problems that need to be first solved in the development of advanced high strength steel.
引文
[1]Lu K.The Future of Metals[J].Science,2010,328:319-320.
    [2]李大赵,索志光,崔天燮,等.采用TCMP技术的低碳低合金高强钢生产的研究现状及进展[J].钢铁研究学报,2016,28(1):1-7.Li Dazhao,Suo Zhiguang,Cui Tianxie,et al.Research status and progress on production of low carbon-alloying and high-strength steel with TMCP process[J].Journal of Iron and Steel Research,2016,28(1):1-7.
    [3]沈孝芹,李欢欢,于复生,等.工程机械用高强钢及其焊接研究现状[J].热加工工艺,2017,46(1):18-21.Shen Xiaoqin,Li Huanhuan,Yu Fusheng,et al.Research status on high strength steel and its welding for construction machinery[J].Hot Working Technology,2017,46(1):18-21.
    [4]Zhou Y X,Song X T,Liang J W,et al.Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in lowcarbon-medium-Mn steel:process-structure-property relationship[J].Materials Science&Engineering A,2018,718:267-276.
    [5]Nakada N,Tsukahara M,Fukazawa K,et al.Very fine structured DPsteel with tempered-martensite matrix fabricated by fast heating[J].Materials Transactions,2018,59(2):166-171.
    [6]Vargas V H,Mejía I,Baltazar-Hernández V H,et al.Characterization of resistance spot welded transformation induced plasticity(TRIP)steels with different silicon and carbon contents[J].Journal of Manufacturing Processes,2018,32:307-317.
    [7]邱木生.980 MPa级热镀锌复相钢研究及生产实践[A]//中国金属学会.第十一届中国钢铁年会论文集---S07.汽车钢[C]//中国金属学会,2017:36-40.Qiu Musheng,Zhang Huanyu,Han Yun,et al.Research and industrial practice of hot dip galvanizing MP980 steel[A]//The Chinese Society for Metals.proceedings of the 11th CSM steel congress---S07.Automotive steel[C]//The Chinese Society for Metals,2017,36-40.
    [8]Wang Q,Sun Y,Gu S,et al.Effect of quenching temperature on sulfide stress cracking behavior of martensitic steel[J].Materials Science&Engineering A,2018,724:131-141.
    [9]Madivala M,Schwedt A,Su L W,et al.Temperature dependent strain hardening and fracture behavior of TWIP steel[J].International Journal of Plasticity,2018,104:80-13.
    [10]Krishna S C,Karthick N K,Jha A K,et al.Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel[J].Journal of Materials Engineering and Performance,2018,27(5):2388-2393.
    [11]Sohn S S,Choi K,Kwak J H,et al.Novel ferrite-austenite duplex lightweight steel with 77%ductility by transformation induced plasticity and twinning induced plasticity mechanisms[J].Acta Materialia,2014,78(5):181-189.
    [12]Wang Junfeng,Wang Zhaoguang,Wang Xiaodong,et al.Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel[J].Scripta Materialia,2017,129:25-29.
    [13]魏元生.第三代高强度汽车钢的性能与应用[J].金属热处理,2015,40(12):34-39.Wei Yuansheng.Performance and application of the 3rd generation high strength automobile steel[J].Heat Treatment of Metals,2015,40(12):34-39.
    [14]赵燕青,刘宏强,苏振,等.轧后中冷温度对780 MPa级高扩孔钢组织与性能的影响[J].金属热处理,2017,42(9):120-123.Zhao Yanqing,Liu Hongqiang,Su Zhenjun,et al.Effect of postrolling intermediate cooling temperature on microstructure and mechanical properties of 780 MPa grade steel with high hole-expanding radio[J].Heat Treatment of Metals,2017,42(9):120-123.
    [15]Da Rosa G,Maugis P,Drillet J,et al.Co-segregation of boron and carbon atoms at dislocations in steel[J].Journal of Alloys and Compounds,2017,724:1143-1148.
    [16]Jun Takahashi,Kazuto Kawakami,Jun-ich Hamada,et al.Direct observation of niobium segregation to dislocations in steel[J].Acta Materialia,2016,107:415-422.
    [17]李秉军,李晶,刘伟健,等.TMCP生产低碳贝氏体钢中微合金化元素的作用机理研究[J].钢铁钒钛,2013,34(3):77-82.Li Bingjun,Li Jing,Liu Jianwei,et al.Research on Strengthening mechanism of microalloying elements in low-carbon bainite steels produced with TMCP process[J].Iron Steel Vanadium Titanium,2013,34(3):77-82.
    [18]Jiang Suihe,Wang Hui,Wu Yuan,et al.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J].Nature,2017,544:460-464.
    [19]Wu Xiaolei,Yang Muxin,Yuan Fuping,et al.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(47):14501-1450.
    [20]Liu Leifeng,Ding Qingqing,Zhong Yuan,et al.Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J].Materials Today,2018,21(4):354-361.
    [21]Caballero F G,Garcia-Mateo C,Miller M K.Design of novel bainitic steels:Moving from ultrafine to nanoscale structures[J].JOM,2014,66(5):747-755.
    [22]Tian Y Z,Bai Y,Zhao L J,et al.A novel ultrafine-grained Fe-22Mn-0.6C TWIP steel with superior strength and ductility[J].Materials Characterization,2017,126:74-80.
    [23]He B B,Hu B,Yen H W,et al.High dislocation density-induced large ductility in deformed and partitioned steel[J].Science,2017,357(6355):1029.
    [24]Liang Y,Li Y Z,Huang M X.The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel[J].Scripta Materialia,2016,112:28-31.
    [25]左龙飞,魏战雷,倪睿,等.热处理工艺对800 MPa低碳贝氏体钢组织性能的影响[J].钢铁研究学报,2012,24(12):37-41.Zuo Longfei,Wei Zhanlei,Ni Rui,et al.Effect of heat treatment on microstructure and mechanical properties of 800 MPa grade low carbon bainitic steel[J].Journal of Iron and Steel Research,2012,24(12):37-41.
    [26]霍向东,董锋,彭政务,等.钛微合金高强钢控轧控冷工艺研究[J].钢铁钒钛,2014,35(6):35-40.Huo Xiangdong,Dong Feng,Peng Zhengwu,et al.Study on controlled rolling and cooling technology of Ti micro-alloyed high strength steel[J].Iron Steel Vanadium Titanium,2014,35(6):35-40.
    [27]Li D Z,Liu Y C,Cui T X,et al.The effect of thermo-mechanical processing parameters on microstructure and mechanical properties of a low carbon,high strength steel[J].Steel Research International,2013,85(3):307-313.
    [28]Xie H,Du L X,Hu J,et al.Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness[J].Materials Science and Engineering A,2014,612:123-130.
    [29]Song Hyejin,Yoo Jisung,Sohn Seoksu,et al.Achievement of high yield strength and strain hardening rate by forming fine ferrite and dislocation substructures in duplex lightweight steel[J].Materials Science and Engineering A,2017,704:287-291.
    [30]Cui W F,Zhang S X,Jiang Y,et al.Mechanical properties and hotrolled microstructures of a low carbon bainitic steel with Cu-P alloying[J].Materials Science and Engineering A,2011,528(21):6401-6406.
    [31]Ghosh A,Das S,Chatterjee S,et al.Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel[J].Materials Characterization,2006,56(1):59-65.
    [32]Caballero F G,Bhadeshia H K D H,Mawella K J A,et al.Design of novel high strength bainitic steels:Part 1[J].Materials Science and Technology,2011,17(5):512-516.
    [33]Ghosh S,Singh A K,Mula S,et al.Mechanical properties,formability and corrosion resistance of thermomechanically controlled processed Ti-Nb stabilized IF steel[J].Materials Science and Engineering A,2017,684:22-36.
    [34]Yong W K,Hong S G,Huh Y H,et al.Role of rolling temperature in the precipitation hardening characteristics of Ti-Mo microalloyed hotrolled high strength steel[J].Materials Science and Engineering A,2014,615(5):255-261.
    [35]Bhadeshia H K.D H.Bainite in Steels[M].London:The University Press,Cambridge,2001.
    [36]Susil K Putatunda,Arjun V Singar,Ronald Tackett,et al.Development of a high strength high toughness ausferritic steel[J].Materials Science and Engineering A,2009,513-514:329-339.
    [37]Lu K,Lu L,Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J].Science,2009,324(5925):349-52.
    [38]Cizek P,Wynne B P,Davies C H J,et al.Effect of composition and austenite deformation on the transformation characteristics of lowcarbon and ultralow-carbon microalloyed steels[J].Metallurgical and Materials Transactions A,2002,33(5):1331-1349.
    [39]Tang S,Liu Z Y,Wang G D,et al.Microstructural evolution and mechanical properties of high strength microalloyed steels:ultra fast cooling(UFC)versus accelerated cooling(ACC)[J].Materials Science and Engineering A,2013,580(10):257-265.
    [40]尹翠兰.1000 MPa级热轧双相钢的微观组织及强化机制[J].金属热处理,2016,41(2):54-57.Yi Cuilan.Microstructure and strengthening mechanism of 1000 MPa grade hot-rolled dual-phase steel[J].Heat Treatment of Metals,2016,41(2):54-57.
    [41]Rodrigues P C M,Pereloma E V,Santos D B.Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J].Materials Science and Engineering A,2000,283(1/2):136-143.
    [42]Sung H K,Lee D H,Shin S Y,et al.Effect of finish cooling temperature on microstructure and mechanical properties of highstrength bainitic steels containing Cr,Mo,and B[J].Materials Science and Engineering A,2015,624:14-22.
    [43]Hase K,Garcia-Mateo C,Bhadeshia H K D H.Bimodal sizedistribution of bainite plates[J].Materials Science and Engineering A,2006,438-440:145-148.
    [44]Zhang K,Li Z D,Sun X J,et al.Development of Ti-V-Mo complex microalloyed hot-rolled 900 MPa-grade high-strength steel[J].Acta Metallurgica Sinica,2015,28(5):641-648.
    [45]Chen C Y,Yen H W,Kao F H,et al.Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J].Materials Science and Engineering A,2009,499(1/2):162-166.
    [46]Park J S,Lee Y K.Nb(C,N)precipitation kinetics in the bainite region of a low-carbon Nb-microalloyed steel[J].Scripta Materialia,2007,57(2):109-112.