固体火箭发动机两相内流场的连续介质-离散颗粒耦合混合模型数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Two-Phase Internal Flow Field in SRM with Continuum-Discrete Particles Coupled Hybrid Model
  • 作者:周伟 ; 谢飞 ; 宁超 ; 苏庆
  • 英文作者:ZHOU Wei;XIE Fei;NING Chao;SU Qing-dong;College of Missile Engineering,Rocket Force University of Engineering;
  • 关键词:固体火箭发动机 ; 拉格朗日法 ; 平衡欧拉法 ; 耦合混合模型 ; 气粒两相流
  • 英文关键词:Solid rocket motor;;Lagrangian method;;Equilibrium Eulerian method;;Coupled hybrid model;;Turbulent gas-particle two-phase flow
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:火箭军工程大学导弹工程学院;
  • 出版日期:2018-12-27 16:47
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 基金:国家“九七三”项目(97361338)
  • 语种:中文;
  • 页:TJJS201905019
  • 页数:11
  • CN:05
  • ISSN:11-1813/V
  • 分类号:153-163
摘要
为解决含Al推进剂固体火箭发动机内流场两相流动的数值模拟问题,采用将颗粒相视为连续介质和离散颗粒相结合的综合方法,建立起气相与颗粒相的双向耦合混合模型。针对颗粒类型与粒径尺寸的不同,采用拉格朗日法描述大粒径颗粒,平衡欧拉法描述小粒径颗粒,克服了现有模型难以全面考虑颗粒尺寸效应而使模拟精度下降的困难,通过算例验证了该混合模型的有效性和准确性。针对含Al推进剂固体火箭发动机内流场湍流气粒两相流动进行了数值模拟,分析了不同粒径尺寸颗粒的分布及其对发动机内流场和结构性能的影响情况。结果表明,大颗粒粒径在跨喷管段变化明显,平均减小30%。粒径40μm以上的颗粒易破碎,且燃烧效率进入平台区,较10μm颗粒下降50%以上,其Al含量均大于60%。
        To deal with the problem of two-phase flow inside a Solid Rocket Motor(SRM)with aluminized propellant,a two-way coupling hybrid model was established by utilizing a comprehensive approach that consider particles as a combination of continuum and discrete particles. Large particles are described by the Lagrangian method,small particles are described by the equilibrium Eulerian method,which overcome the problem of accuracy reduced due to the difficulty of fully considering the particle size. The model was verified by an example and a numerical simulation of turbulent gas-particle two-phase flow in SRM with Al propellant was conducted. It shows that the size of large particles changed significantly across the nozzle with an average decrease of 30%. Particles with a diameter of 40μm and above were easily broken,and its combustion efficiency entered the platform area,with a decrease of more than 50% compared with that of 10μm particles,and the Al composition was greater than 60%. The distribution of particles with different sizes and their influence on flow field and structural performance of the SRM are analyzed. It provides a new effective method that improving numerical simulation accuracy of full-scale three-dimensional two-phase internal flow field of aluminized propellant SRM with a submerged nozzle.
引文
[1] Luca L T D. Burning of Aluminized Solid Rocket Propellants:from Micrometric to Nanometric Fuel Size[C]. Xi’an:International Autumn Seminar on Propellants,Explosives and Pyrotechnics,2007.
    [2] Maggi F,Bandera A,De Luca L T,et al. Agglomeration in Solid Rocket Propellants:Novel Experimental and Modeling Methods[J]. Progress in Propulsion Physics,2012,(2):81-98.
    [3] Najjar F,Haselbacher A,Balachandar S,et al. Simulations of Droplet Nozzle Impact and Slag Accumulation in the RSRM[R]. AIAA 2006-4588.
    [4]刘冰,方丁酉,夏智勋,等.考虑气体-颗粒两相流效应的火箭发动机喷管参数优化设计[J].推进技术,2013,34(1):8-14.(LIU Bing,FANG Ding-you,XIA Zhi-xun,et al. Optimal Design of Rocket Nozzle Parameters with Consideration of Gas-Particle TwoPhase Flow Effect[J]. Journal of Propulsion Technology,2013,34(1):8-14.)
    [5] Coats D,Dunn S,French J. Improvements to the Solid Performance Program(SPP)[R]. AIAA 2003-4504.
    [6] Daniel E. Eulerian Approach for Unsteady Two-Phase Solid Rocket Flows with Aluminum Particles[J]. Journal of Propulsion and Power,2015,16(2):309-317.
    [7] Dupays J,Wey S,Fabignon Y. Steady and Unsteady Reactive Two-Phase Computations in Solid Rocket Motors with Eulerian and Lagrangian Approaches[R].AIAA 2001-3871.
    [8] Andrew M,Eaton A,Mark E,et al. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor[R]. AIAA 2001-3584.
    [9] Sabnis J,Jong F D. Calculation of the Two-Phase Flow in an Evaporating Spray Using an Eulerian-Lagrangian Analysis[R]. AIAA 90-0447.
    [10] Madabhushi R K,Sabnis J S,Jong F J D,et al. Calculation of the Two-Phase Aft-Dome Flowfield in Solid Rocket Motors[J]. Journal of Propulsion and Power,2015,7(2):178-184.
    [11] Sabnis J,Jong F D,Gibeling H. A Two-Phase Restricted Equilibrium Model for Combustion of Metalized Solid Propellants[J]. AIAA 92-3509.
    [12] Ciucci A,Iaccarino G,Amato M. Numerical Investigation of 3D Two-Phase Turbulent Flows in Solid Rocket Motors[R]. AIAA 98-3509.
    [13] Lupoglazoff N,Vuillot F,Dupays J,et al. Numerical Simulations of the Unsteady Flow Inside Segmented Solid-Propellant Motors with Burning Aluminum Particles[R]. AIAA 2002-0718.
    [14] Thomas B B,Wu-Zhen Ren,Vigor Yang. Combustion of Aluminized Solid Propellants[J]. Solid Propellant Chemistry,Combustion,and Motor Interior Ballistics,Progress in Astronautics and Aeronautics,2000,2(18):663-687.
    [15] Liaw P,Chen Y S,Shang H M,et al. Particulate Multi-Phase Flowfield Calculation with Combustion/Breakup Models for Solid Rocket Motor[R]. AIAA 94-2780.
    [16]许团委,田维平,王建儒.中、小过载下战术发动机内流场数值模拟[J].推进技术,2015,36(4):532-539.(XU Tuan-wei,TIAN Wei-ping,WANG Jian-ru.Numerical Simulation of Flow Field of Tacticle SRM with Low and Medium Acceleration[J]. Journal of Propulsion Technology,2015,36(4):532-539.)
    [17]于勇,张夏,陈维.用双流体模型模拟超声速气固两相流动[J].航空动力学报,2010,25(4):800-807.
    [18] Laubacher B. Internal Flow Analysis of Large L/D Solid Rocket Motors[R]. AIAA 2000-3803.
    [19] Balachandar S,Maxey M R. Methods for Evaluating Fluid Velocities in Spectral Simulations of Turbulence[J]. Journal of Computational Physics,1989,83(1):96-125.
    [20] Jim Ferry. A Fast Eulerian Method for Disperse TwoPhase Flow[J]. International Journal of Multiphase Flow,2001,27(7):1199-1226.
    [21] Ferry J,Balachandar S. Equilibrium Expansion for the Eulerian Velocity of Small Particles[J]. Powder Technology,2002,125(2–3):131-139.
    [22] Liu Z,Li S,Liu M,et al. Experimental Investigation of the Combustion Products in an Aluminised Solid Propellant[J]. Acta Astronautica,2017,133(1):136-144.
    [23] Salita,M. Quench Bomb Investigation of Al2O3 Formation from Solid Rocket Propellants,Part 2:Analysis of Data[C]. Huntsville:25th JANNAF Combution Meeting,1988.
    [24] Najjar F M,Ferry J P,Haselbacher A,et al. Simulations of Solid-Propellant Rockets:Effects of Aluminum Droplet Size Distribution[J]. Journal of Spacecraft and Rockets,2012,43(6):1258-1270.
    [25] Ao W,Liu P,Yang W. Agglomerates,Smoke Oxide Particles,and Carbon Inclusions in Condensed Combustion Products of an Aluminized GAP-Based Propellant[J]. Acta Astronautica,2016,129(1):147-153.
    [26] Jackson T L,Najjar F,Buckmaster J. An Aluminum Injection Model Based on Random Packs for Solid Propellant Rocket Motor Simulations[R]. AIAA 2004-4042.
    [27] Jackson T L,Buckmaster J,Najjar F. New Aluminum Agglomeration Models and Their Use in Solid-Propellant-Rocket Simulations[J]. Journal of Propulsion and Power,2005,21(5):925-936.
    [28]方丁酉.两相流动力学[M].长沙:国防科学技术大学出版社,1988.
    [29] Spalart P, Allmaras S. A One-Equation Turbulence Model for Aerodynamic Flows[J]. La Recherche Aérospatiale,1992,439(1):5-21.
    [30] Balachandar S. Large-Scale Multiphase Large Eddy Simulation of Flow in Solid Rocket Motors[R]. AIAA2003-3700.
    [31] Widenner J F,Beckstead M W. Aluminum Combustion Modeling in Solid Propellant Combustion Products[R].AIAA 98-3824.
    [32] CAVENY L H. Breakup of Al/Al2O3 Agglomerates in Accelerating Flowfields[J]. AIAA Journal,1979,17(12):1368-1371.
    [33]黄俊.固体火箭发动机测试技术[M].北京:航空工业出版社,1989.
    [34]武利敏.固体火箭发动机两相流计算模型分析与比较[D].哈尔滨:哈尔滨工程大学,2007.
    [35]张宏安,叶定友,侯晓.固体火箭发动机凝聚相微粒分布研究现状[J].固体火箭技术,2000,23(3):25-28.
    [36]张明信,王国志,魏剑维,等.影响Al2O3凝相尺寸分布的因素[J].推进技术,2001,22(3):250-253.(ZHANG Ming-xin,WANG Guo-zhi,WEI Jian-wei,et al. Factors Influencing Al2O3 Condensed Phase Sizing Distribution[J]. Journal of Propulsion Technology,2001,23(3):25-28.)