进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of air-inlet structures on combustion and flow field of inner wall in secondary combustion chamber of solid rocket ramjet
  • 作者:王金金 ; 查柏林 ; 张炜 ; 惠哲 ; 苏庆 ; 何齐
  • 英文作者:WANG Jinjin;ZHA Bailin;ZHANG Wei;HUI Zhe;SU Qingdong;HE Qi;College of Missile Engineering,Rocket Force University of Engineering;School of Measuring and Optical Engineering,Nanchang Hangkong University;
  • 关键词:固体冲压发动机 ; 补燃室 ; 进气道结构 ; 燃烧效率 ; 烧蚀
  • 英文关键词:solid rocket ramjet;;secondary combustion chamber;;air-inlet structure;;combustion efficiency;;ablation
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:火箭军工程大学导弹工程学院;南昌航空大学测试与光电工程学院;
  • 出版日期:2019-05-15
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.315
  • 基金:火炸药重大专项~~
  • 语种:中文;
  • 页:BJHK201905017
  • 页数:10
  • CN:05
  • ISSN:11-2625/V
  • 分类号:146-155
摘要
为研究进气道结构对固体冲压发动机补燃室燃烧及内壁烧蚀的影响,采用标准k-ε湍流模型,单步涡耗散燃烧模型与KING硼粒子点火燃烧模型,开展了双下侧90°进气结构和双侧180°进气结构固体冲压发动机补燃室内燃气燃烧数值模拟,对比分析了补燃室燃气燃烧流场特征和内壁烧蚀环境特征。结果表明:双侧180°进气结构在补燃室中形成大漩涡,有利于燃气与空气的掺混燃烧,至补燃室出口位置,总燃烧效率超过90%,且该结构有效减少了粒子对内壁的冲刷侵蚀;在双下侧90°进气结构补燃室中,凝聚相粒子和燃气贴近补燃室一侧运动,导致氧气浓度和温度分布不均,不利于燃气的掺混燃烧,总燃烧效率为74%,在远离补燃室进气道一侧形成高温热烧蚀、高浓度粒子侵蚀、高速射流冲刷和热应力集中的综合破坏;双侧180°进气结构的固体冲压发动机补燃室总体性能优于双下侧90°进气结构的冲压发动机补燃室。
        In order to study the effect of air-inlet structures on combustion and ablation combustion chamber of solid ramjet,the flow field characteristics in the secondary in the secondary combustion chamber of solid rocket ramjet with bilateral 180° air-inlet structure and bilateral 90° air-inlet structure on both down sides were analyzed based on the standard k-ε turbulence model,a one-step eddy-dissipation combustion model and combustion mode of boron particles of KING. The results show that large whirlpools are formed in the secondary combustion chamber with bilateral 180° air-inlet structure,which is beneficial to the mixing and combustion of gas and air. The total combustion efficiency of gas phase is 90% at the outlet of the secondary combustion chamber. Moreover,the erosion due to particles is effectively reduced. In the secondary combustion chamber with bilateral 90° air-inlet structure,condensed phase particles and gas move along the unilateral combustion chamber wall,leading to the uneven distribution of oxygen mass fraction and temperature,which are not conducive to combustion of gas. The total combustion efficiency of gas phase is 74%. Comprehensive destruction due to high-temperature thermal ablation,high-concentration particle erosion,high-velocity jet flushing and thermal stress concentration occurs at the side far from the inlet. The overall performance of the secondary combustion chamber with bilateral 180° air-inlet structure is better than that with bilateral 90° air-inlet structure on both down sides.
引文
[1]鲍福廷,黄熙君,张振鹏,等.固体火箭冲压组合发动机[M].北京:中国宇航出版社,2006:1-2.BAO F T,HUANG X J,ZHANG Z P,et al.Integral solid propellant ramjet rocket motor[M].Beijing:China Aerospace Publishing House,2006:1-2(in Chinese).
    [2]CHERNG D L,YANG V,KUO K K.Numerical study of turbulent reacting flows in solid-propellant ducted rocket combustors[J].Journal of Propulsion and Power,1989,5(6):678-685.
    [3]董岩,余为众,吕希诚.固体火箭冲压发动机二次燃烧室流场数值计算和试验研究[J].推进技术,1995,16(l):27-32.DONG Y,YU W Z,LV X C.Numerical simulation and experimental investigation on the airbreathing combustor of a solid propellant ramrocket[J].Journal of Propulsion Technology,1995,16(l):27-32(in Chinese).
    [4]STOWE R A.Two phase flow combustion modeling of a ducted rocket:AIAA-2001-3641[R].Reston:AIAA,2001.
    [5]刘杰,李进贤,冯喜平,等.旋转射流对含硼固体火箭冲压发动机二次燃烧的影响[J].推进技术,2011,32(3):355-359.LIU J,LI J X,FENG X P,et al.Influence of the swirl injection for secondary combustion of boron based ducted rocket[J].Journal of Propulsion Technology,2011,32(3):355-359(in Chinese).
    [6]胡旭,徐义华,王洪远,等.进气道结构对含硼固冲发动机二次燃烧性能影响分析[J].四川兵工,2014,35(12):133-137.HU X,XU Y H,WANG H Y,et al.Analyzing the performance of boron-based propellant ducted engine with different air inlet structure[J].Sichuan Ordnance Journal,2014,35(12):133-137(in Chinese).
    [7]王洪远,徐义华,胡旭,等.空气旋转进气对含硼固体冲压发动机二次燃烧性能影响的研究[J].兵工学报,2015,36(4):619-625.WANG H Y,XU Y H,HU X,et al.Research on the characteristics of secondary combustion of born-based ducted rocket with swirling air injection[J].Acta Armamentarii,2015,36(4):619-625(in Chinese).
    [8]巩伦昆,陈雄,周长省,等.结构尺寸对固体燃料冲压发动机燃速影响的仿真研究[J].兵工学报,2016,37(5):798-807.GONG L K,CHEN X,ZHOU C S,et al.Numerical investigation on effect of solid fuel ramjet geometry on solid fuel regression rate[J].Acta Armamentarii,2016,37(5):798-807(in Chinese).
    [9]王洪远,唐田田.含铝颗粒固体燃料冲压发动机燃烧速率特性分析[J].首都师范大学学报(自然科学版),2017,38(6):30-36.WANG H Y,TANG T T.Fuel regression rate analysis of aluminum solid fuel ramjet[J].Journal of Capital Normal University(Natural Science Edition),2017,38(6):30-36(in Chinese).
    [10]李唯暄,陈雄,周长省,等.旋流燃烧室构型对固体燃料冲压发动机自持燃烧性能影响[J].推进技术,2018,39(6):1312-1322.LI W X,CHEN X,ZHOU C S,et al.Effects of combustion chamber configuration on characteristic of solid fuel ramjet selfsustaining combustion in swirl flow[J].Journal of Propulsion Technology,2018,39(6):1312-1322(in Chinese).
    [11]LIOU T M,HWAGN Y H.Calculation of flow fields in side-inlet ramjet combustors with an algebraic Reynolds stress model[J].Journal of Propulsion and Power,1989,5(6):686-693.
    [12]冯喜平,董韬,李进贤,等.侧向旋转射流进气对固冲发动机性能的影响[J].固体火箭技术,2008,31(6):591-594.FENG X P,DONG T,LI J X,et al.Influence of dual-side inlet swirl-injection on performance of solid rocket ramjet[J].Journal of Solid Rocket Technology,2008,31(6):591-594(in Chinese).
    [13]郭莹,吴虎,韩文俊.含硼固体火箭冲压发动机中燃气旋流角对补燃室的影响[J].科学技术与工程,2009,9(4):1080-1084.GUO Y,WU H,HAN W J.Effects of jet rotational angle on the second combustor of boron-based propellant solid rocket ramjets[J].Science Technology and Engineering,2009,9(4):1080-1084(in Chinese).
    [14]NATNA B,GANY A.Combustion characteristics of boron-fueled solid fuel ramjet with aft-burner[J].Journal of Propulsion and Power,1993,9(5):694-701.
    [15]YEH C L,KUO K K.Ignition and combustion of boron particles[J].Progress of Energy and Combustion Science,1996,22(3):511-541.
    [16]FOELSCHE R O,BURTON R L,KRIER H.Ignition and combustion of boron particles in hydrogen/oxygen explosion products:AIAA-1997-0127[R].Reston:AIAA,1997.
    [17]谢爱元,武晓松,马虎,等.聚乙烯在固体燃料冲压发动机中燃烧特性的数值研究[J].推进技术,2013,34(3):368-374.XIE A Y,WU X S,MA H,et al.Numerical simulation for combustion characteristic of polyethylene in solid fuel ramjet[J].Journal of Propulsion Technology,2013,34(3):368-374(in Chinese).
    [18]张永芝,李卓,李海龙.固体火箭冲压发动机补燃室流场三维数值计算研究[J].航空发动机,2009,35(3):22-26.ZHANG Y Z,LI Z,LI H L.Three-dimensional numerical simulation of afterburner low field of solid rocket ramjet[J].Aeroengine,2009,35(3):22-26(in Chinese).
    [19]彭灯辉,王丹丹,杨涛,等.固体燃料冲压发动机燃烧效率建模与数值分析[J].推进技术,2014,35(2):251-256.PENG D H,WANG D D,YANG T,et al.Modeling and numerical analysis on combustion efficiency of solid fuel ramjet[J].Journal of Propulsion Technology,2014,35(2):251-256(in Chinese).
    [20]CROWE C T,TROUTT T R,CHUNG J N.Numerical models for two-phase turbulent flows[J].Annual Review of Fluid Mechanics,1996,28:11-43.
    [21]高金海,马艳红,洪杰,等.高超声速飞行器冲压燃烧室随机振动响应分析[J].北京航空航天大学学报,2008,34(8):981-985.GAO J H,MAO Y H,HONG J,et al.Random vibration response analysis of hypersonic flight vehicle ramjet combustor chamber structure[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(8):981-985(in Chinese).
    [22]孙冰,刘小勇,林小树,等.固体火箭冲压发动机燃烧室热防护层烧蚀计算[J].推进技术,2002,23(5):375-378.SUN B,LIU X Y,LIN X S,et al.Computation of ablation of thermal-protection layer in solid rocket ramjet combustor[J].Journal of Propulsion Technology,2002,23(5):375-378(in Chinese).
    [23]沈振华.富氧环境下固体火箭冲压发动机补燃室热防护层烧蚀数值仿真及实验研究[D].南京:南京理工大学,2017.SHEN Z H.Numerical simulation and experimental analysis of adiabatic wall ablation in solid rocket ramjet[D].Nanjnig:Nanjnig University of Science and Technology,2017(in Chinese).
    [24]李理,杨涛,程兴华,等.固体火箭冲压发动机补燃室硅基绝热层烧蚀模型[J].推进技术,2012,33(3):450-454.LI L,YANG T,CHENG X H,et al.Ablation model of silicon insulator in ramjet combustion chamber[J].Journal of Propulsion Technology,2012,33(3):450-454(in Chinese).