丹红杨×通辽1号杨杂交子代叶形性状的遗传变异分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Variation Analysis of Leaf Morphological Traits in Populus deltoides cl. ‘Danhong’ × P. simonii cl. ‘Tongliao 1’ Hybrid Progenies
  • 作者:成星奇 ; 贾会霞 ; 孙佩 ; 张亚红 ; 胡建军
  • 英文作者:CHENG Xing-qi;JIA Hui-xia;SUN Pei;ZHANG Ya-hong;HU Jian-jun;State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry;
  • 关键词:杨树 ; 子代 ; 叶形性状 ; 遗传变异
  • 英文关键词:Populus;;progenies;;leaf morphological traits;;genetic variation
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:林木遗传育种国家重点实验室国家林业和草原局林木培育重点实验室中国林业科学研究院林业研究所;
  • 出版日期:2019-04-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金面上项目“杨属派间杂种苗期抗旱相关性状QTL定位及新品种选育”(31570669);; 国家重点研发计划课题“速生人工林木材品质性状的遗传基础”(2017YFD0600201)
  • 语种:中文;
  • 页:LYKX201902016
  • 页数:11
  • CN:02
  • ISSN:11-1221/S
  • 分类号:104-114
摘要
[目的]对丹红杨(美洲黑杨)×通辽1号杨(小叶杨)422个F_1代无性系叶的形态学指标进行分析,揭示杨树派间杂交群体叶形性状的遗传变异规律,为进一步解析其叶形性状的遗传机制奠定基础。[方法]使用Yaxin-1241便携式叶面积仪结合手工测量的方式,对杂交子代当年扦插材料的叶面积、叶长、叶宽、叶周长、叶柄长、侧脉夹角和最大叶宽距叶尖长度等7个指标进行测量,计算叶长宽比、叶柄相对长、最大叶宽位置和叶缘因子,利用SPSS软件完成相关、通径、遗传以及主成分分析。[结果]丹红杨和通辽1号杨两亲本叶面积、叶长、叶宽、叶周长、叶柄长、侧脉夹角、叶长宽比、叶柄相对长以及最大叶宽位置等9个指标差异显著,子代变异丰富且呈连续的正态分布。在10个叶形指标间45对相关关系中,36对呈显著或极显著水平。通径分析结果表明,叶长和叶宽是决定叶面积的主要因素。通过主成分分析得到2个主因子,累计解释80.19%的叶形变异,子代第一主成分的标准化值全部介于两亲本之间,并有64.69%与父本分布在同侧,第二主成分则均匀分布在中亲值两侧。对于表征叶片大小的2个指标叶面积和叶柄长,多数子代小于中亲值且其均值更接近父本,而表征叶片形状的叶柄相对长和最大叶宽位置与之相反,其余指标接近中亲值。除叶长宽比、侧脉夹角以及叶缘因子外,子代叶形指标大多介于两亲本之间。[结论]丹红杨和通辽1号杨叶形性状差异显著,杂交子代叶形性状存在丰富的连续性变异,且性状间关联紧密,叶长和叶宽是决定叶面积的主要因素。叶面积、叶柄长以及最大叶宽位置等性状存在明显的遗传偏向性,杂交子代叶片形状与丹红杨更为接近,呈较强的母本效应,而叶片大小则表现出偏向父本小叶杨的遗传效应。30.09%子代的综合叶形指标具有超亲现象,选择潜力较大,在今后的育种实践中可加以利用。
        [Objective] To reveal the genetic variation pattern of leaf morphological traits in poplar intersectional hybrid population, and to lay the foundation for studying their genetic mechanisms by analyzing the leaf morphological indexes in 422 F_1 progenies from P. deltoides cl. ‘Danhong' × P. simonii cl. ‘Tongliao 1'. [Method] Seven indexes(leaf area, length, width, perimeter, petiole length, vein angle and the distance between largest width and blade tip) were measured through Yaxin-1241 portable area meter and manual measurement. Four indexes(the ratio of leaf length and width, relative length of petiole, position of the largest width and leaf margin factor) were calculated. Correlation, path coefficient, genetic and principal component analysis were accomplished by SPSS software. [Result] Significant differences were found between two parents for all morphology indexes except leaf margin factor. Plentiful phenotypic variations with normal and continuous distribution existed in hybrid population. As many as 36 of 45 pairs of correlations which were up to significant or extremely significant level. The result of path coefficient analysis indicated that the leaf area was determined mainly by leaf length and width. Two main factors were obtained through principal component analysis, which explained 80.19% of total variations. Standardized value of first principal component in progenies was fallen completely between two parents, with 64.69% were distributed on the same side of male parent, while the second principal component was evenly distributed on both sides of the median parents. Two indexes of leaf size(leaf area and petiole length) in progenies were lower than the median of parents, and the mean was closer to male parent. In contrast, the leaf shape indexes(relative length of petiole and the position of maximum blade width) were closer to the female parent. Other indexes were closer to the median of parents. Most indexes of leaf morphology were between two parents except the ratio of length and width, the leaf margin factor and the lateral vein angle. [Conclusion] There are significant differences in leaf morphological traits between two parents. The variation of leaf morphological traits in their progenies is continuous and plentiful, and these traits are closely associated, among which leaf length and leaf width are the main factors determining leaf area. Leaf area, petiole length and position of the largest width have a evident genetic bias, the leaf shape of hybrid offspring which is more similar to P. deltoides cl ‘Danhong' poplar shows a strong maternal effect, while the leaf size shows a genetic bias toward the male P. simonii cl. ‘Tongliao 1' parental effect. The comprehensive leaf shape index of 30.09% progenies has the transgressive segregation phenomenon, which has great potential for selection, and could be utilized in tree breeding in the future.
引文
[1] Nicotra A B,Leigh A,Boyce C K,et al.The evolution and functional significance of leaf shape in the angiosperms[J].Functional Plant Biology,2011,38(7):535-552.
    [2] Du Q,Xu B,Gong C,et al.Variation in growth,leaf,and wood property traits of Chinese white poplar (Populus tomentosa),a major industrial tree species in Northern China[J].Canadian Journal of Forest Research,2014,44(4):326-339.
    [3] Wang H,Niu L,Fu C,et al.Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis[J].Plos Genetics,2017,13(3):e1006649.
    [4] 胡建军.美洲黑杨叶面积、生长量、酚类物质及抗虫性状基因定位[D].北京:北京林业大学,2002.
    [5] Bresso E G,Chorostecki U,Rodriguez R E,et al.Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J].Plant Physiol,2018,176:1694-1708..
    [6] Feng G,Qin Z,Yan J,et al.Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL[J].New Phytologist,2011,191(3):635-646.
    [7] Zhang J,Wei B,Yuan R,et al.The Arabidopsis RING-type E3 ligase TEAR1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation[J].Plant Cell,2017,29(2):243-259.
    [8] Farooq M,Tagle A G,Santos R E,et al.Quantitative trait loci mapping for leaf length and leaf width in rice cv.IR64 derived lines[J].Journal of Integrative Plant Biology,2010,52(6):578-584.
    [9] Wassom J J.Quantitative trait loci for leaf angle,leaf width,leaf length,and plant height in a maize (Zea mays L) B73 × Mo17 population[J].Maydica,2013,58(3):318-321.
    [10] 闫雪,史雨刚,梁增浩,等.小麦旗叶形态相关性状的QTL定位[J].核农学报,2015,29(7):1253-1259.
    [11] 魏永成,李周岐,李煜,等.杜仲杂交子代苗期表型性状的遗传分析[J].西北农林科技大学学报:自然科学版,2012,40(8):137-143.
    [12] Tan L Q,Wang L Y,Xu L Y,et al.SSR-based genetic mapping and QTL analysis for timing of spring bud flush,young shoot color,and mature leaf size in tea plant (Camellia sinensis) [J].Tree Genetics & Genomes,2016,12(3):52.
    [13] 苏晓华,李金花,陈伯望,等.杨树叶片数量性状相关联标记及其图谱定位研究[J].林业科学,2000,36(1):33-40.
    [14] Trewin H.Linking transcript,QTL and association mapping to understand the genetic control of leaf size and shape in Populus[D].University of Southampton,2008.
    [15] Migicovsky Z,Li M,Chitwood D H,et al.Morphometrics reveals complex and heritable apple leaf shapes[J].Frontiers in Plant Science,2018,8,No.2185:1-16.
    [16] Drost D R,Puranik S,Novaes E,et al.Genetical genomics of Populus leaf shape variation[J].BMC Plant Biology,2015,15(1),No.166:1-10.
    [17] Thomas H,Ougham H.On plant growth and form.[J].New Phytologist,2017,216(2):337-338.
    [18] 李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答[J].作物学报,2010,36(6):918-931.
    [19] 曾燕蓉,朱方容,林强,等.几种桑树叶面积测量方法及叶片大小与叶片质量的相关性分析[J].蚕业科学,2013(5):868-876.
    [20] Perez-Sanz F,Navarro P J,Egea-Cortines M.Plant phenomics:an overview of image acquisition technologies and image data analysis algorithms[J].Gigascience,2017,6(11):1-18.
    [21] 李金花,张绮纹,苏晓华,等.美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J].林业科学研究,2002,15(1):76-82.
    [22] 张春玲,李淑梅,赵自成,等.杨树新品种'丹红杨[J].林业科学,2008,44(1):169.
    [23] 徐纬英.杨树[M].哈尔滨:黑龙江人民出版社,1988.
    [24] 姬慧娟.丹红杨与小叶杨杂交子代苗期抗旱相关性状遗传分析[D].北京:中国林业科学研究院,2015.
    [25] Dewey D R,Lu K H.A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production[J].Problemy Tuberkuleza,1959,51(9):70-74.
    [26] El-Kassaby Y A,Ritland K,Ritland C,et al.Forest Genetics[M] //Watts S B ,Tolland L.Faculty of Forestry.Vancouver,BC:The university of British Columbia,2005:474-486.
    [27] 张福敏.响叶杨×银白杨遗传图谱加密与相关QTL定位[D].南京:南京林业大学,2011.
    [28] Baker R L,Leong W F,Brock M T,et al.Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape[J].New Phytologist,2015,208(1):257-268.
    [29] Tsukaya H.Leaf shape:genetic controls and environmental factors[J].International Journal of Developmental Biology,2004,49(5-6):547-555.
    [30] Kozuka T,Horiguchi G,Kim G T,et al.The different growth responses of the Arabidopsis thaliana Leaf Blade and the Petiole during Shade Avoidance are Regulated by Photoreceptors and Sugar[J].Plant & Cell Physiology,2005,46(1):213-223.
    [31] Guet J,Fabbrini F,Fichot R,et al.Genetic variation for leaf morphology,leaf structure and leaf carbon isotope discrimination in European populations of black poplar (Populus nigra L.)[J].Tree Physiology,2015,35(8):850.
    [32] 徐红,韩玉兰,杨自湘,等.用叶片特征区别不同产地不同单株青杨的研究[J].林业科技通讯,1995 (2):17-18.
    [33] 薄文浩.藏川杨遗传多样性及杂交子代遗传变异研究[D].北京:北京林业大学,2012.
    [34] 张德强,张志毅,杨凯,等.毛新杨×毛白杨叶片表型和春季萌芽时间QTL分析(英文版) [J].林业科学,2005,41(1):42-48.