光照强度对促性腺激素释放激素在京红Ⅰ号蛋鸡中脑和间脑表达的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of light intensity on expression of gonadotropin-releasing hormone in mesencephalon and diencephalon of Jinghong-Ⅰ hens
  • 作者:刘海斌 ; 吴占福 ; 张立永 ; 官丽辉 ; 陈宝江 ; 胡满
  • 英文作者:LIU Hai-bin;WU Zhan-fu;ZHANG Li-yong;GUAN Li-hui;CHEN Bao-jiang;HU Man;College of Animal Science and Technology,Hebei Agricultural University;Institute of Animal husbandry, Hebei North University;
  • 关键词:光照强度 ; 促性腺激素释放激素 ; 中脑 ; 间脑 ; 免疫组织化学 ; 京红Ⅰ号蛋鸡
  • 英文关键词:Light intensity;;Gonadotropin-releasing hormone;;Mesencephalon;;Diencephalon;;Immunohistochemistry;;Jinghong-Ⅰhen
  • 中文刊名:JPXB
  • 英文刊名:Acta Anatomica Sinica
  • 机构:河北农业大学动物科技学院;河北北方学院牧业研究所;
  • 出版日期:2019-06-06
  • 出版单位:解剖学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点研发计划(2016YFD0500501);; 河北省教育厅科学研究计划(ZD2017204);; 河北省现代农业产业体系(HBCT2018150408);; 河北北方学院重大项目(201406)
  • 语种:中文;
  • 页:JPXB201903003
  • 页数:7
  • CN:03
  • ISSN:11-2228/R
  • 分类号:20-26
摘要
目的探讨光照强度对影响蛋鸡繁殖性能的神经调节机制。方法选取100日龄京红Ⅰ号蛋鸡60只,随机分为4组,每组15只,每组重复3次,每次重复5只,分别接受光照强度30 lx、20 lx、10 lx和1 lx处理,用免疫组织化学方法和图像分析技术检测促性腺激素释放激素(GnRH)免疫反应阳性神经元在鸡中脑和间脑的表达和分布。结果 GnRH免疫反应阳性神经元主要见于中脑的视顶盖中央灰质层(SGC)、峡核大细胞部(Imc)、峡核小细胞部(Ipc)、顶盖前下核/顶盖前间下核(SP/IPS)、基底视束根核(nbor)和半月核(SLu)。在SGC、Imc、Ipc、SLu内,光照强度30 lx和20 lx组的免疫反应阳性神经元平均灰度值显著高于10 lx和1 lx组(P<0.05);在SGC、Imc和Ipc内,30 lx组面积百分比最大,和20 lx相比差异不显著(P>0.05),显著高于10 lx和1 lx组(P<0.05)。GnRH免疫反应阳性神经元在间脑主要分布于圆核(Rot)、下丘脑室周核(PHN)、室旁核(PVN)、外侧膝状体腹侧核(GLv)、丘脑前背外侧核(DLAm)、皮质联合床核(CPa)、隔内侧核(SM)。GnRH免疫反应阳性神经元平均灰度值在Rot内,光照强度30 lx最高,显著大于20 lx、10 lx和1 lx组(P<0.05),在PHN、PVN、GLv内,30 lx和20 lx组相比差异不显著(P>0.05),均显著高于10 lx和1 lx组(p<0.05),面积百分比在Rot内,30 lx组最高,和20 lx组相比,差异不显著(P>0.05),显著大于10 lx和1 lx组(P<0.05),在PHN和PVN内,30 lx和20 lx显著大于10 lx和1 lx(P<0.05)。结论光照强度显著影响GnRH在100日龄京红Ⅰ号蛋鸡中脑和间脑的表达,进而调节其生殖机能。光信息通路的离顶盖通路,包括侧枝循环-峡核回路在调节中起重要作用。
        Objective To explore the nervous regulating mechanism in the effect of light intensity on reproductive performance. Methods Sixty healthy Jinghong-Ⅰ hens aged 100 days were randomly divided into four groups of 15 hens and applied a light of 30 lx, 20 lx, 10 lx, and 1 lx, respectively, for 7 days. The distribution and expression of gonadotropin-releasing hormone(GnRH) in mesencephalon and diencephalon were detected using immunohistochemical and image analysis methods. Results GnRH immunoreactive positive neurons were mainly observed in stratum griseum centrale(SGC) of tectum, nucleus isthmi pars magnocellularis(Imc), nucleus isthmi pars parvocellularis(Ipc), nucleus subpre-tectalis/interstito-pretectalis-subpretectalis(SP/IPS), nucleus of basal optic root(nbor), and nucleus semilunaris(Slu) of mesencephalon. The mean gray values of positive neurons in 30 lx and 20 lx groups were significantly higher than those of 10 lx and 1 lx groups(P<0.05) in SGC, Imc, Ipc, and SLu. The percent cell area in SGC, Imc, and Ipc was the largest in 30 lx group, having no significant difference comparing 20 lx, being significant higher than those of 10 lx and 1 lx(P<0.05). GnRH immunoreactive positive neurons were mainly observed in nucleus rotundus(Rot), nucleus periven tricularis hypothalami(PHN), nucleus pariventriculairs megnocellularis(PVN), nucleus geniculatus lateralis ventralis(GLv), nucleus dorsolateralis thalami(DLAm), nucleus commissura pallii anterior(Cpa), and nucleus medial septal(SM) of diencephalon. The mean gray values of positive neurons in 30 lx were the largest, being significantly higher than those of and 20 lx, 10 lx and 1 lx groups(P<0.05) in Rot. There was no significant difference(P>0.05) between 30 lx and 20 lx groups, but they were significant higher than those of 10 lx and 1 lx(P<0.05) in PHN, PVN, and GLv. The percent cell area in Rot was the largest in 30 lx group, having no significant difference comparing 20 lx, being significant higher than those of 10 lx and 1 lx(P<0.05). Those in 30 lx and 20 lx groups were significant higher than 10 lx and 1 lx(P<0.05) in PHN and PVN. Conclusion Light intensity affect the expression of GnRH in hen mesencephalon and diencephalon obviously in Jinghong-Ⅰhens aged 100 days, regulating their reproductive function. The tectofugal pathway of the optical pathways, including collateral circulation of nucleus isthmi, plays an important role in the course of regulation.
引文
[1] Matsuo H,Baba Y,Nair RM,et al.Structure of the porcine LH- and FSH-releasing hormone.Ⅰ.The proposed amino acid sequence[J].Biochem Biophys Res Commun,1971,43(6):1334-1339.
    [2] Lü ShJ,Liu ZhB.Research development of gonadotropin releasing hormone (GnRHs) and its receptor Ⅰ in the mammals[J].Journal of China Agricultural University,2013,22(4):147-154.(in Chinese)吕慎金,刘兆斌.促性腺激素释放激素(GnRHs)及其Ⅰ型受体在哺乳动物中的研究进展[J].中国农业大学学报,2013,22(4):147-154.
    [3] Maruska KP,Fernald RD.Social regulation of gene expression in the hypothalamic-pituitary-gonadal axis[J].Physiology (Bethesda),2011,26(6):412-423.
    [4] Peirson SN,Brown LA,Pothecary CA,et al.Light and the laboratory mouse[J].J Neurosci Methods,2018,300:26-36.
    [5] Ruby NF,Brennan TJ,Xie X,et al.Role of melanopsin in circadian responses to light[J].Science,2002,298(5601):2211-2213.
    [6] Liu L,Li D,Gilbert ER,et al.Effect of Monochromatic light on expression of estrogen receptor (er) and progesterone receptor (pr) in ovarian follicles of chicken[J].PLoS One,2015,10(12):e0144102.
    [7] Voigt C,Bennett NC.Gnrh mRNA expression in the brain of cooperatively breeding female Damaraland mole-rats[J].Reproduction,2017,153(4):453-460.
    [8] Habibi HR,Pati D.Extrapituitary gonadotropin-releasing hormone (GnRH) binding sites in goldfish[J].Fish Physiol Biochem,1993,11(1-6):43-49.
    [9] Foster WG,Younglai EV.An immunohistochemical study of the GnRH neuron morphology and topography in the adult female rabbit hypothalamus[J].Am J Anat,1991,191(3):293-300.
    [10] Yoon H,Enquist LW,Dulac C.Olfactory inputs to hypothalamic neurons controlling reproduction and fertility[J].Cell,2005,123(4):669-682.
    [11] Huang W,Yao B,Sun L,et al.Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract[J].Life Sci,2001,68(15):1727-1734.
    [12] Zhang L,Chen F,Cao J,et al.Green light inhibits GnRH-I expression by stimulating the melatonin-GnIH pathway in the chick brain[J].J Neuroendocrinol,2017,29(5):1-15.
    [13] Wang L,Xie LP,Huang WQ,et al.Presence of gonadotropin-releasing hormone (GnRH) and its mRNA in rat pancreas[J].Mol Cell Endocrinol,2001,172(1-2):185-191.
    [14] Silerkhodr TM,Grayson M.Salmon GnRH and its analogues bind the human placental receptor[J].J Soc Gynecol Investig,2001,8(4):233-238.
    [15] Vizcarra JA,Kirby JD,Kreider DL.Testis development and gonadotropin secretion in broiler breeder males[J].Poult Sci,2010,89(2):328-334.
    [16] Isseroff A,Madar Y.Monocular stimulation increases deoxyglucose uptake in ipsilateral primary optic centers of the rat[J].Neurosci Lett,1983,41(3):277-282.
    [17] Wang SR,Wang YC,Frost BJ.Magnocellular and parvocellular divisions of pigeon nucleus isthmi differentially modulate visual responses in the tectum[J].Exp Brain Res,1995,104(3):376-384.
    [18] Wang SR.The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals[J].Brain Res Rev,2003,41(1):13-25.
    [19] Wang Y,Xiao J,Wang SR.Excitatory and inhibitory receptive fields of tectal cells are differentially modified by magnocellular and parvocellular divisions of the pigeon nucleus isthmi[J].J Comp Physiol A,2000,186(6):505-511.
    [20] Hahn TP,Ball GF.Changes in brain GnRH associated with photorefractoriness in house sparrows (Passer domesticus)[J].Gen Comp Endocrinol,1995,99(3):349-363.
    [21] Wang Y,Song ZhQ,Chen YX,et al.Effect of Monochromatic light on the distribution and expression of gonadotropin-releasing hormone (GnRH) in broiler brain[J].Acta Veterinaria et Zootechnica Sinica,2011,42(11):1605-1609.(in Chinese)王瑶,宋志琦,陈耀星,等.单色光对肉鸡脑内促性腺激素释放激素分布和表达的影响[J].畜牧兽医学报,2011,42(11):1605-1609.
    [22] Lan XY.Effect of different intensity light stimulation on the c-fos gene expression in hen mesencephalon and diencephalons[D].Hebei agricultry university,2010.(in Chinese)兰晓宇.不同强度光照对母鸡中脑和间脑c-fos基因表达的影响[D].河北农业大学,2010.