太原汛期短时强降水环流分型及环境参量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Circulation Classification and Environmental Parameters Analysis on Short-time Heavy Rainfall in Flood Season in Taiyuan
  • 作者:周晋红 ; 赵彩萍 ; 董春卿
  • 英文作者:ZHOU Jinhong;ZHAO Caiping;DONG Chunqing;Taiyuan Meteorological Bureau of Shanxi Province;Shanxi Meteorological Observatory;
  • 关键词:太原 ; 短时强降水 ; 环流分型 ; 环境参量分析
  • 英文关键词:Taiyuan;;short-time heavy rainfall;;circulation classification;;analysis of environmental parameters
  • 中文刊名:GSQX
  • 英文刊名:Journal of Arid Meteorology
  • 机构:山西省太原市气象局;山西省气象台;
  • 出版日期:2019-06-30
  • 出版单位:干旱气象
  • 年:2019
  • 期:v.37
  • 基金:中国气象局预报员专项“副高影响型下三次暴雨过程的多尺度特征分析”(CMAYBY2018-011);; 山西省气象局面上项目“副高型暴雨中短时强降水成因及落区对比分析”(SXKMSTQ20195626)和“太原城市空气污染气象指数研究”(SXKMSFW20195625)共同资助
  • 语种:中文;
  • 页:GSQX201903006
  • 页数:8
  • CN:03
  • ISSN:62-1175/P
  • 分类号:42-49
摘要
应用太原1996—2015年7个国家气象站、2008—2015年63个区域站6—9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg~(-1),冷涡型则≤1000 J·kg~(-1)。西北气流型850 hPa与500 hPa温差(ΔT_(850-500))大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h~(-1)的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。
        Based on the hourly precipitation data from June to September of 7 national meteorological stations during 1996-2015 and 63 automatic weather stations during 2008-2015 in Taiyuan, and relative radiosonde and surface observation data, the synoptic patterns of circulation configuration on short-time heavy rainfall days in Taiyuan were classified and the characteristics of key environmental parameters under different patterns were studied. The results show that there were four circulation patterns on 500 hPa during short-time heavy rainfall processes in Taiyuan including cold vortex type, upper trough type, upper trough with subtropical high type and northwest flow type. Short-time heavy rainfalls in Taiyuan always happened under weak CAPE, and in most cases it was less than 1500 J·kg~(-1), and for all of cold vortex type it was less than 1000 J·kg~(-1). For northwest flow type, the ΔT_(850-500) was bigger and there always was stronger static instability and obviously dry layer on 500 hPa. For upper trough with subtropical high type, there always was a higher K index, and mean value of warm cloud thickness was 3576 m, which was significantly thicker than those of the other types. The entire cases of cold vortex type and 85% cases of upper trough type happened under weak vertical wind shear within 0-6 km, 35% cases of upper trough with subtropical high type and northwest flow type occurred under a moderate vertical wind shear condition. Cold vortex type and northwest flow type always had better vapor conditions on 700 hPa than that of 850 hPa. The extreme rainfall more than 70 mm·h~(-1) occurred under northwest flow type, which had moderate CAPE, strong unstable stratification, weak 0-6 km vertical wind shear, and plenty vapor from low to middle layer with warm cloud thickness more than 3550 m, the cooperation of these environmental parameters had denotative meaning for the strong precipitation efficiency.
引文
[1] 张一平,吴蓁,苏爱芳,等.基于流型识别和物理量要素分析河南强对流天气特征[J].高原气象,2013,32(5):1492-1502.
    [2] 孙继松,戴建华,何立富,等.强对流天气预报的基本原理与技术方法[M].北京:气象出版社,2014:50-51,139-148.
    [3] 全美兰,葛权哲,吕志红,等.“7.21”北京特大暴雨的湿位涡诊断分析[J].中国农学通报,2014,30(8):232-238.
    [4] 李文娟,赵放,赵璐,等.基于单站探空资料的不同强度短时强降水预报指标研究[J].暴雨灾害,2017,36(2):132-138.
    [5] 张宇星,张宁,王超杰.2012年7月4日河南大暴雨过程的短时强降水成因分析[J].气象与环境科学,2014,37(4):40-49.
    [6] 赵海军,王庆华.山东极端强降水天气环境参数特征[J].中国农学通报,2015,31(5):189-194.
    [7] 吴迎旭,周一,孟莹莹,等.2008-2016年黑龙江省短时强降水分布特征及影响系统[J].自然灾害学报,2017,26(6):175-183.
    [8] 牛淑贞,张一平,梁俊平,等.郑州市两次短时强降水过程的环境条件和中尺度特征对比[J].暴雨灾害,2016,35(2):138-147.
    [9] 魏晓雯,梁萍,何金海.上海地区不同类型短时强降水的大尺度环流背景特征分析[J].气象与环境科学,2016,39(2):69-75.
    [10] 高洁,漆梁波.上海地区短时强降水特点及其影响[J].气象与环境科学,2015,38(3):52-60.
    [11] 吴进,李琛,于波,等.两类短时强降水天气边界层气象要素变化特征[J].气象,2018,44(7):902-910.
    [12] 徐慧燕,邓霞君,周国华.丽水地区短时强降水时空分布特征及成因分析[J].气象与环境科学,2016,39(3):44-49.
    [13] 曾勇,杨莲梅.中亚低涡背景下新疆连续短时强降水特征分析[J].沙漠与绿洲气象,2016,10(4):67-73.
    [14] 常煜.呼伦贝尔市汛期短时强降水特征[J].沙漠与绿洲气象,2015,9(2):24-30.
    [15] CHEN J,ZHENG Y,ZHANG X,et al.Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China[J].Acta Meteorologica Sinica,2013,27(6):868-888.
    [16] 王楠,井宇.陕西省短时强降水时空分布特征研究[J].安徽农业科学,2013,41(35):13631-13634.
    [17] 范昱,陈勇,王米吉,等.近32年长沙市短时强降水的气候变化研究[J].气象与环境科学,2013,36(4):50-54.
    [18] 孟丽霞,许东蓓.甘肃省短时强降水的时空特征[J].沙漠与绿洲气象,2017,11(6):34-39.
    [19] 王胜,郭海瑛,牛喜梅.甘肃省汛期小时降水的变化特征[J].干旱气象,2018,36(4):610-616.
    [20] 王国荣,王令.北京地区夏季短时强降水时空分布特征[J].暴雨灾害,2013,32(3):276-279.
    [21] 郑永光,周康辉,盛杰,等.强对流天气监测预报预警技术进展[J].应用气象学报,2015,26(6):641-657.
    [22] 许爱华,孙继松,许东蓓,等.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象,2014,40(4):400-411.
    [23] 陈元昭,俞小鼎,陈训来.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象,2016,42(2):144-155.
    [24] 樊李苗,俞小鼎.中国短时强对流天气的若干环境参数特征分析[J].高原气象,2013,32(1):156-165.
    [25] 路亚奇,焦美龄,李祥科,等.陇东短时强降水与冰雹天气对比分析及预报方法研究[J].干旱区地理,2016,39(2):317-326.
    [26] 斯琴,王佳津,荀学义,等.基于T639对流参数的内蒙古强对流天气潜势预报方法初探[J].干旱气象,2016,34(5):906-911.
    [27] 高晓梅,孙雪峰,秦瑜蓬,等.山东一次强对流天气的环境条件和对流风暴特征[J].干旱气象,2018,36(3):447-455.
    [28] 秦宝国,朱刚.河北一次暴雨过程中不同时段强降水的成因[J].干旱气象,2013,31(2):327-332.
    [29] 苏永玲,何立富,巩远发,等.京津冀地区强对流时空分布与天气学特征分析[J].气象,2011,37(2):177-184.
    [30] 杨波,孙继松,毛旭,等.北京地区短时强降水过程的多尺度环流特征[J].气象学报,2016,74(6):919-934.
    [31] 赵桂香,赵建峰,杨东,等.山西一次大暴雨过程云图及环境场的特征分析[J].高原气象,2013,32(6):1747-1757.
    [32] 王丛梅,俞小鼎,李芷霞,等.太行山地形影响下的极端短时强降水分析[J].气象,2017,43(4):425-433.
    [33] 俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理及业务应用[M].北京:气象出版社,2006:91-94,170-171.
    [34] 俞小鼎.2012年7月21日北京特大暴雨成因分析[J].气象,2012,38(11):1313-1329.