中国东部大气温湿廓线特征及其对辐射收支计算影响的分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of temperature and humidity profiles in eastern China and their impacts on radiation budget
  • 作者:孙囡 ; 陈逸伦 ; 傅云飞
  • 英文作者:SUN Nan;CHEN Yilun;FU Yunfei;School of Earth and Space Science,University of Science and Technology of China;
  • 关键词:中国东部 ; 辐射 ; 大气温湿廓线 ; 气候 ; 辐射传输模式
  • 英文关键词:Eastern China;;Radiation;;Temperature and humidity profiles;;Climate;;Radiative transfer model
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:中国科学技术大学地球和空间科学学院;
  • 出版日期:2019-06-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:国家重点研发计划项目(2017YFC1501402);; 中央高校基本科研业务费专项资金
  • 语种:中文;
  • 页:QXXB201903014
  • 页数:16
  • CN:03
  • ISSN:11-2006/P
  • 分类号:195-210
摘要
辐射平衡是气候决定性因素之一,温湿廓线对辐射计算有重要影响。利用中国东部地区1960—2008年74个探空站资料,将SBDART(Santa Barbara DISORT Atmospheric Radiative Transfer)辐射传输模式自带的大气温湿廓线和探空测得的实际大气温湿廓线进行对比,并代入SBDART模式中,分别计算晴空条件下不同温湿廓线对辐射通量的影响。结果表明:(1)中国东部地区的大气温湿廓线有明显的区域和季节特点;(2)模式地面向下辐射通量与实际相比有较明显差异,尤其是在东北地区的冬季、中东部地区的夏季和华南地区的冬季,差值达20—35 W/m~2,相对误差达2.01%—3.18%;(3)在东北地区的冬季、中东部地区的冬季以及华南地区的夏、冬季,模式计算的大气顶向上辐射通量与实际相比差值达10—22 W/m~2,相对误差可达3.67%—8.94%;(4)模式与实际辐射加热率的差值在0.03—0.29 K/d。研究表明,模式自带的大气温湿廓线区域和季节划分并不够细致,不足以代表中国东部地区各个区域及季节的温湿特点。建立一套中国东部地区的大气标准廓线可以为辐射模拟提供更准确的输入量。
        The balance of the earth-atmosphere radiation budget is one of the decisive factors for climate. Temperature and humidity profiles have important influences on the radiation balance. Based on data collected at 74 sounding stations in eastern China from 1960 to 2008, temperature and absolute humidity profiles from the SBDART(Santa Barbara DISORT Atmospheric Radiative Transfer) model are compared with that from the sounding stations. Besides, the observed sounding profiles are put into the SBDART model to calculate the effects of temperature and absolute humidity profiles on radiation fluxes under clear sky condition. Results indicate that the atmospheric temperature and absolute humidity profiles have obvious regional and seasonal characteristics. There are significant differences between total downward fluxes at the surface calculated from the SBDART model and from observations at the sounding stations, especially in the winter in northeastern China and in the summer in central and eastern China and in the winter in southern China. The differences can reach up to 20-35 W/m~2 and the relative errors range from 2.01% to 3.18%. In the winter in northeastern China, in the winter in central and eastern China and in the summer and winter in southern China, the differences between total upward fluxes calculated from the default profiles in the model and from sounding profiles can reach up to 10-22 W/m~2 at the top of the atmosphere. And the relative errors range from 3.67% to 8.94%. The differences in the radiative heating rate between the model calculation and observations at sounding stations range from 0.03 K/d to 0.29 K/d. Our studies show that regional and seasonal characteristics of temperature and absolute humidity profiles from the SBDART model cannot realistically represent the conditions in eastern China. The establishment of a set of standard atmospheric profiles for eastern China can provide more accurate inputs for the simulation of radiation.
引文
顾钧禧,章基嘉,巢纪平等.1994.大气科学辞典.北京:北京气象出版社,980pp.Gu J X,Zhang J J,Chao J P,et al.1994.Atmospheric Science Dictionary.Beijing:China Meteorological Press,980pp (in Chinese)
    郭艳君,丁一汇.2008.近50年我国探空温度序列均一化及变化趋势.应用气象学报,19(6):646-654.Guo Y J,Ding Y H.2008.Homogeneity and long-term trend analysis on radiosonde temperature time series in China during recent 50 years.J Appl Meteor Sci,19(6):646-654 (in Chinese)
    郭艳君,丁一汇.2014.1958—2005年中国高空大气比湿变化.大气科学,38(1):1-12.Guo Y J,Ding Y H.2014.Upper-air specific humidity change over China during 1958-2005.Atmos Sci,38(1):1-12 (in Chinese)
    李秀镇,盛立芳,刘骞等.2016.基于SBDART辐射传输模式的晴天地面总辐射模拟误差分析.中国海洋大学学报,46(8):13-18.Li X Z,Sheng L F,Liu Q,et al.2016.Error in calculation of surface radiation based on SBDART radiative transfer model.Periodical Ocean Univ China,46(8):13-18 (in Chinese)
    梁宏.2012.青藏高原大气水汽变化和对辐射影响的模拟[D].北京:中国气象科学研究院,171pp.Liang H.2012.Variation of the atmospheric water vapor and its radiative effect simulations over the Tibetan Plateau[D].Beijing:Chinese Academy of Meteorological Sciences,171pp (in Chinese)
    卢鹏,张华,荆现文等.2015.长波区间太阳辐射对气候模拟的影响.大气科学学报,38(2):175-183.Lu P,Zhang H,Jing X W,et al.2015.Effect of solar radiation in longwave region on climate simulations.Trans Atmos Sci,38(2):175-183 (in Chinese)
    陆渝蓉,高国栋.1984.我国大气中平均水汽含量与水分平衡的特征.气象学报,42(3):301-310.Lu Y R,Gao G D.1984.The water vapour content and the water budget in the atmosphere over China.Acta Meteor Sinica,42(3):301-310 (in Chinese)
    沈钟平,张华.2009.影响地面太阳辐射及其谱分布的因子分析.太阳能学报,30(10):1389-1395.Shen Z P,Zhang H.2009.Analysis on the factors affecting surface solar radiation and its spectral distribution.Acta Energ Sol Sinica,30(10):1389-1395 (in Chinese)
    盛裴轩,毛节泰,李建国等.2003.大气物理学.北京:北京大学出版社,551pp.Sheng P X,Mao J T,Li J G,et al.2003.Atmospheric Physics.Beijing:Peking University Press,551pp (in Chinese)
    石广玉.2007.大气辐射学.北京:科学出版社,402pp.Shi G Y.2007.Atmospheric Radiation.Beijing:Science Press,402pp (in Chinese)
    王宏,石广玉,王标等.2007.中国沙漠沙尘气溶胶对沙漠源区及北太平洋地区大气辐射加热的影响.大气科学,31(3):515-526.Wang H,Shi G Y,Wang B,et al.2007.The impacts of dust aerosol from Deserts of China on the radiative heating rate over desert sources and the north Pacific Region.Atmos Sci,31(3):515-526 (in Chinese)
    王荣英,周顺武,吴萍等.2010.近30 a华北地区高空气温时空演变特征.气象与环境科学,33(4):31-37.Wang R Y,Zhou S W,Wu P,et al.2010.Temporal and spatial characteristic about upper temperature over the last 30 Years in North China.Meteor Environ Sci,33(4):31-37 (in Chinese)
    王绍武,叶瑾琳,龚道溢等.1998.近百年中国年气温序列的建立.应用气象学报,9(4):392-401.Wang S W,Ye J L,Gong D Y,et al.1998.Construction of mean annual temperature series for the last one hundred years in China.Quart J Appl Meteor,9(4):392-401 (in Chinese)
    王颖,任国玉.2005.中国高空温度变化初步分析.气候与环境研究,10(4):780-790.Wang Y,Ren G Y.2005.Change in free atmospheric temperature over China during 1961-2004.Climatic Environ Res,10(4):780-790 (in Chinese)
    谢潇,祁莉,何金海.2013.1980—2009年中国东部上空温度变化特征.气候变化研究进展,9(2):102-109.Xie X,Qi L,He J H.2013.An analysis on upper-air temperature over eastern China during 1980-2009.Adv Climate Change Res,9(2):102-109 (in Chinese)
    熊安元,阮新,廖捷等.2015.中国地面和高空气候变化数据产品研发技术.北京:气象出版社,17-34.Xiong A Y,Ruan X,Liao J,et al.2015.Technology for the Development of Ground and High Altitude Climate Change Data Product in China.Beijing:China Meteorological Press,17-34 (in Chinese)
    徐华.2013.中国太阳辐射区域影响因子研究[D].青岛:中国海洋大学,61pp.Xu H.2013.The study of impact factors of solar radiation in particular areas of China[D].Qingdao:Ocean University of China,61pp (in Chinese)
    尹青,张华,何金海.2011.近48年华东地区地面太阳总辐射变化特征和影响因子分析.大气与环境光学学报,6(1):37-46.Yin Q,Zhang H,He J H.2011.Long-term change of surface total solar radiation and influencing factors over east China in recent 48 years.J Atmos Environ Opt,6(1):37-46 (in Chinese)
    翟盘茂,郭艳君.2006.高空大气温度变化研究.气候变化研究进展,2(5):228-232.Zhai P M,Guo Y J.2006.A study of upper air temperature change.Adv Climate Change Res,2(5):228-232 (in Chinese)
    赵静,阎广建,焦中虎等.2017.SBDART的参数化短波辐射传输模型.遥感学报,21(6):853-863.Zhao J,Yan G J,Jiao Z H,et al.2017.Enhanced shortwave radiative transfer model based on SBDART.J Remote Sens,21(6):853-863 (in Chinese)
    Achad M,López M L,Palancar G G,et al.2013.Retrieving the relative contribution of aerosol types from single particle analysis and radiation measurements and calculations:A comparison of two independent approaches.J Aerosol Sci,64:11-23
    Arking A.1996.Absorption of solar energy in the atmosphere:Discrepancy between model and observations.Science,273(5276):779-782
    Bohlinger P,Sinnhuber B M,Ruhnke R,et al.2014.Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends.Atmos Chem Phys,14(3):1679-1688
    Chang L,Gao G P,Jin S G,et al.2015.Calibration and evaluation of precipitable water vapor from MODIS infrared observations at night.IEEE Trans Geosci Remote Sensing,53(5):2612-2620
    Chang L,Guo L X,Feng G P,et al.2018.Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations.Acta Oceanol Sinica,37(1):30-39
    Chen Y L,Fu Y F.2018.Tropical echo-top height for precipitating clouds observed by multiple active instruments aboard satellites.Atmos Res,199:54-61
    Free M,Seidel D J.2005.Causes of differing temperature trends in radiosonde upper air data sets.J Geophys Res,110(D7):D07101
    Fu Q,Liou K N.1992.On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres.J Atmos Sci,49(22):2139-2156
    Garand L,Turner D S,Larocque M,et al.2001.Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels.J Geophys Res,106(D20):24017-24031
    Mao Q J,Huang C L,Zhang H X,et al.2018.Aerosol optical properties and radiative effect under different weather conditions in Harbin,China.Infrared Phys Technol,89:304-314
    Michalsky J J,Anderson G P,Barnard J,et al.2006.Shortwave radiative closure studies for clear skies during the Atmospheric Radiation Measurement 2003 Aerosol Intensive Observation Period.J Geophys Res,111(D14):D14S90
    Obregón M A,Serrano A,Costa M J,et al.2015.Validation of libRadtran and SBDART models under different aerosol conditions//IOP Conference Series:Earth and Environmental Science.IOP Publishing,28:012010
    Ramanathan V,Vogelmann A M.1997.Greenhouse effect,atmospheric solar absorption and the Earth's radiation budget:From the Arrhenius-Langley era to the 1990s.Ambio,26(1):38-46
    Ricchiazzi P,Yang S R,Gautier C,et al.1998.SBDART:A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere.Bull Am Meteor Soc,79(10):2101-2114
    Sun B,Reale A,Seidel D J,et al.2010.Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics.J Geophys Res,115(D23):D23104
    Vaquero-Martínez J,Antón M,de Galisteo J P O,et al.2018.Water vapor radiative effects on short-wave radiation in Spain.Atmos Res,205:18-25
    Zhang H,Nakajima T,Shi G Y,et al.2003.An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations.J Geophys Res,108(D20):4641