鄱阳湖湿地洲滩植物梯度变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in floodplain vegetation in Poyang Lake wetlands
  • 作者:谢冬明 ; 黄庆华 ; 易青 ; 朱再昱 ; 周国宏 ; 田磊 ; 周杨明 ; 贾俊松 ; 钱海燕 ; 许跃峰
  • 英文作者:XIE Dongming;HUANG Qinghua;YI Qing;ZHU Zaiyu;ZHOU Guohong;TIAN Lei;ZHOU Yangming;JIA Junsong;QIAN Haiyan;XU Yuefeng;Tourism College, Jiangxi Science & Technology Normal University;School of Geogrphy & Environment, Jiangxi Normal University;Center of Remote Sensing Information System of Jiangxi Province;
  • 关键词:洲滩植物 ; 梯度变化 ; 碟形湖泊 ; 洲滩前缘 ; 鄱阳湖湿地
  • 英文关键词:floodplain vegetation;;gradient changes;;fronted floodplain;;shallow lakes;;Poyang Lake wetlands
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:江西科技师范大学旅游学院;江西师范大学地理与环境学院;江西省遥感信息系统中心;
  • 出版日期:2019-06-08
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31360120,41561105,71473113);; 江西省科技支撑计划项目(20151BBG70014)
  • 语种:中文;
  • 页:STXB201911026
  • 页数:10
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:277-286
摘要
湿地洲滩植物物种多样性及生物量是反映湿地生态系统状态的重要指标,也是揭示水位变化下湿地生态系统响应机理的重要途径。基于鄱阳湖湿地野外调查和实验分析数据,利用α和β物种多样性指数,初步探讨了鄱阳湖湿地洲滩植物物种多样性及地上部分生物量的空间分布特征及其差异性。结果表明,鄱阳湖湿地洲滩植物物种多样性随高程变化的差异性显著(P<0.001),蚌湖和泗洲头在高程14—15 m的指数较大,表明这一高程范围内与其他高程范围内的物种更替比较显著,而战备湖和北深湖在高程15—16 m的指数较大,表明这一高程范围内与其他高程范围内的物种更替比较显著,而常湖池的指数变化不明显,表明常湖池各高程范围内的物种更替较小。鄱阳湖湿地洲滩植物年地上生物量的空间差异性较为复杂,与湿地高程呈现单峰曲线关系,即随湿地高程增加而增加,到达一个峰值后开始减少。同一高程范围内下,洲滩前缘与碟形湖泊的物种多样性与地上生物量差异显著(P<0.05),前者最高值在高程13—15 m,后者最高值在高程14—17 m。
        The biodiversity and biomass of floodplain vegetation are important indexes to explain the ecosystem of wetlands and key methods to probe the response mechanism to water level change. Poyang Lake is the largest fresh-water lake in China and one of the most important wetlands globally. In a field survey, 3 s technology and DEM data were used to analyze the variation in plant species diversity and biomass along the elevational gradient in Poyang Lake wetlands with α and β biodiversity indexes. The results showed that there was a complex gradient of both biodiversity and biomass characteristics for the floodplain vegetation(P <0.001). The index of biodiversity is highest at 14—15 m in Banghu Lake and Sizhoutou floodplain; the index of biodiversity is the highest at 15—16 m in Zhanbeihu Lake and Beishenhu Lake floodplain, but the index of biodiversity is not obvious in Changhuchi Lake floodplain. The correlation between biodiversity/biomass and elevation was nonlinear, and with increasing elevation, the biomass initially increased to a peak value and then decreased. The maximum volume of biomass measured in the fronted floodplain and the shallow lakes were different(P <0.05); the maximum volume of biomass was located at an elevation of 14-15 m in fronted marshland, and at an elevation of 15—16 m in the shallow lakes.
引文
[1] Scholes R J,Biggs R.A biodiversity intactness index.Nature,2005,434(7029):45- 49.
    [2] Davidson T A,Mackay A W,Wolski P,Mazebedi R,Murray-Hudson M,Todd M.Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed,sub-tropical wetland.Freshwater Biology,2012,57(6):1253- 1265.
    [3] Rongoei P J K,Kipkemboi J,Kariuki S T,van Dam A A.Effects of water depth and livelihood activities on plant species composition and diversity in Nyando floodplain wetland,Kenya.Wetlands Ecology and Management,2014,22(2):177- 189.
    [4] Kennedy M P,Murphy K J,Gilvear D J.Predicting interactions between wetland vegetation and the soil-water and surface-water environment using diversity,abundance and attribute values.Hydrobiologia,2006,570(1):189- 196.
    [5] Andrew S M,Totland ?,Moe S R.Spatial variation in plant species richness and diversity along human disturbance and environmental gradients in a tropical wetland.Wetlands Ecology and Management,2015,23(3):395- 404.
    [6] Eckard R S,Hernes P J,Bergamaschi B A,Stepanauskas R,Kendall C.Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta.Geochimica et Cosmochimica Acta,2007,71(24):5968- 5984.
    [7] Brix H,Sorrell B K,Lorenzen B.Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?Aquatic Botany,2001,69(2/4):313- 324.
    [8] 徐松浚,徐正春.广州市湿地植被碳汇功能研究.湿地科学,2015,13(2):190- 196.
    [9] 叶春,赵晓松,吴桂平,王晓龙,刘元波.鄱阳湖自然保护区植被生物量时空变化及水位影响.湖泊科学,2013,25(5):707- 714.
    [10] 段晓男,王效科,逯非,欧阳志云.中国湿地生态系统固碳现状和潜力.生态学报,2008,28(2):463- 469.
    [11] Mauquoy D,Engelkes T,Groot M H M,Markesteijn F,Oudejans M G,van der Plicht J,van Geel B.High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs.Palaeogeography,Palaeoclimatology,Palaeoecology,2002,186(3/4):275- 310.
    [12] 吕铭志,盛连喜,张立.中国典型湿地生态系统碳汇功能比较.湿地科学,2013,11(1):114- 120.
    [13] Walter B P,Heimann M,Matthews M.Modeling modern methane emissions from natural wetlands:1.Model description and results.Journal of Geophysical Research,2001,106(D24):34189- 34206.
    [14] Aselmann I,Crutzen P J.Global distribution of natural freshwater wetlands and rice paddies,their net primary productivity,seasonality and possible methane emissions.Journal of Atmospheric Chemistry,1989,8(4):307- 358.
    [15] Crill M P,Bartlett K B,Harriss R C,Gorham E,Verry E S,Sebacher D I,Madzar L,Sanner W.Methane flux from Minnesota peatlands.Global Biogeochemical Cycles,1988,2(4):371- 384.
    [16] 李文,王鑫,潘艺雯,刘以珍,何亮,张欢,应智霞,刘颖,葛刚.不同水淹深度对鄱阳湖洲滩湿地植物生长及营养繁殖的影响.生态学报,2018,38(9):3014- 3021.
    [17] 周云凯,白秀玲,宁立新.鄱阳湖湿地灰化苔草种群生产力特征及其水文响应.生态学报,2018,38(14):4953- 4963.
    [18] 段后浪,赵安,姚忠.鄱阳湖湿地典型草洲主要植物种群在5个资源环境梯度上的生态位特征.生态与农村环境学报,2017,33(3):225- 233.
    [19] 段后浪,赵安,姚忠.不同海拔高程梯度下鄱阳湖典型草洲植物群落物种-多度分布格局的模型拟合.植物科学学报,2017,35(3):335- 343.
    [20] 吴桂平,叶春,刘元波.鄱阳湖自然保护区湿地植被生物量空间分布规律.生态学报,2015,35(2):361- 369.
    [21] 谢冬明,郑鹏,邓红兵,赵景柱,樊哲文,方豫.鄱阳湖湿地水位变化的景观响应.生态学报,2011,31(5):1269- 1276.
    [22] Xie D M,Jin G H,Zhou Y M.Study on ecological function zoning for Poyang lake wetland:a RAMSAR site in China.Water Policy,2013,(15):922- 935.
    [23] 李冰,杨桂山,王晓龙,万荣荣.鄱阳湖典型洲滩植物物种多样性季节动态特征.土壤,2016,48(2):298- 305.
    [24] 王江林,万慧琳.鄱阳湖湿地植被的生物多样性及其保护和利用.环境与开发,2000,15(4):19- 21.
    [25] 简永兴,李仁东,王建波,陈家宽.鄱阳湖滩地水生植物多样性调查及滩地植被的遥感研究.植物生态学报,200l,25(5):581- 587.
    [26] 彭映辉,简永兴,李仁东.鄱阳湖平原湖泊水生植物群落的多样性.中南林学院学报,2003,23(4):22- 27.
    [27] Xu X L,Zhang Q,Tan Z Q,Li Y L,Wang X L.Effects of water-table depth and soil moisture on plant biomass,diversity,and distribution at a seasonally flooded wetland of Poyang Lake,China.Chinese Geographical Science,2015,25(6):739- 756.
    [28] 鄱阳湖研究编委会.鄱阳湖研究.上海:上海科学技术出版社,1988.
    [29] 江西省林业厅,刘信中,叶居新.江西湿地.北京:中国林业出版社,2000.
    [30] 江西省水文局.江西水文.武汉:长江出版社,2007:90- 91.
    [31] 王晓鸿,鄢帮有,吴国琛.山江湖工程.北京:科学出版社,2006.
    [32] 张萌,倪乐意,徐军,何亮,符辉,刘足根.鄱阳湖草滩湿地植物群落响应水位变化的周年动态特征分析.环境科学研究,2013,26(10):1057- 1063.
    [33] 国家林业局.LY/T 1237—1999 森林土壤有机质的测定及碳氮比的计算.1999:106- 108.http://www.lknet.ac.cn/lybz/PSearchBook.cbs
    [34] 叶万辉,马克平,马克明,桑卫国,高贤明.北京东灵山地区植物群落多样性研究Ⅸ.尺度变化对α多样性的影响.生态学报,1998,18(1):10- 14.
    [35] 李振基,陈圣宾,巫渭欢.自然保护区的生物多样性测度.厦门大学学报:自然科学版,2011,50(2):471- 475.
    [36] 高贤明,马克平,黄建辉,刘灿然.北京东灵山地区植物群落多样性的研究Ⅺ.山地草甸β多样性.生态学报,1998,18(1):24- 32.
    [37] 侯扶江,王春梅,娄珊宁,侯向阳,呼天明.我国草原生产力.中国工程科学,2016,18(1):80- 93.
    [38] 李森,范航清,邱广龙,石雅君,周如琼.海草生产力研究进展.海洋环境科学,2011,30(1):143- 147.
    [39] Auclair A N,Goff F G.Diversity relations of upland forests in the western Great Lakes area.The American Naturalist,1971,105(946):499- 528.
    [40] Fu H,Zhong J Y,Yuan G X,Guo C J,Ding H J,Feng Q,Fu Q.A functional-trait approach reveals community diversity and assembly processes responses to flood disturbance in a subtropical wetland.Ecological Research,2015,30(1):57- 66.
    [41] 胡振鹏,葛刚,刘成林,陈伏生,李述.鄱阳湖湿地植物生态系统结构及湖水位对其影响研究.长江流域资源与环境,2010,19(6):597- 605.
    [42] 李文,王鑫,何亮,刘以珍,葛刚.鄱阳湖洲滩湿地植物生长和营养繁殖对水淹时长的响应.生态学报,2018,38(22):8176- 8183.
    [43] 刘佩佩,白军红,王婷婷,韩祯,赵庆庆,卢琼琼.白洋淀优势植物群落生物量及其影响因子.湿地科学,2013,11(4):482- 487.
    [44] Keddy P A.湿地生态学——原理与保护(第二版).兰志春,黎磊,沈瑞昌,译.北京:高等教育出版社,2018.
    [45] 廖富强,刘影,叶慕亚,郑林.鄱阳湖典型湿地生态环境脆弱性评价及压力分析.长江流域资源与环境,2008,17(1):133- 137.
    [46] 谢冬明,金国花.鄱阳湖湖岸带景观变化.生态学报,2016,36(17):5548- 5555.
    [47] 谢冬明,周杨明,钱海燕.鄱阳湖湿地复合生态系统研究.北京:科学出版社,2018.
    [48] 谢冬明,金国花.鄱阳湖湿地生态旅游分区评价.林业资源管理,2015,(5):151- 156.