自动化示踪技术在岩体水文地质研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Automated Tracer Technology in Rock Mass Hydrogeology Research
  • 作者:张培兴 ; 曹聪慧 ; 吴云
  • 英文作者:ZHANG Peixing;CAO Conghui;Wu Yun;College of Management Science & Engineering, Hebei University of Economics and Business;School of Earth Sciences and Engineering, Nanjing University;
  • 关键词:岩体水文地质 ; 野外试验 ; 自动化示踪技术 ; 应用现状 ; 对策
  • 英文关键词:rock hydrogeology;;field test;;automated tracer technology;;application status;;countermeasures
  • 中文刊名:SLFD
  • 英文刊名:Water Power
  • 机构:河北经贸大学管理科学与工程学院;南京大学地球科学与工程学院;
  • 出版日期:2019-05-20 10:21
  • 出版单位:水力发电
  • 年:2019
  • 期:v.45;No.543
  • 基金:国家重点基础研究发展计划(973计划)(2013CB036001);; 河北经贸大学博士科研启动经费(0112190705)
  • 语种:中文;
  • 页:SLFD201907008
  • 页数:6
  • CN:07
  • ISSN:11-1845/TV
  • 分类号:42-46+75
摘要
自动化示踪技术是一种快速测定岩体水文地质参数的野外试验方法,与传统的示踪试验相比,自动化示踪技术更精确、更便捷,而且可实时动态监测,最大限度保证了数据信息的采集成功率与利用率,能够满足工程中岩体渗透特性参数野外测定的实际需要。介绍了自动化示踪技术的设备构成、基本原理、配套的解译软件及特点,总结自动化示踪技术近些年的应用情况,指出了存在的问题,进而提出了针对性的对策,可为后期示踪技术的进一步应用提供思路。
        The automated tracer technology is a field test method for the rapid determination of hydrogeological parameters of rock masses. Compared with traditional tracer tests, the automated tracer technology is more accurate and convenient, and it can be monitored dynamically in real time and ensure the success rate and utilization of data information to the maximum extent. The utilization rate can meet the actual needs of field determination of rock permeability parameters in project. The equipment composition, basic principles, supporting interpretation software and features of automated tracer technology are introduced. The application status of automated tracer technology in recent years is summarized, the existing problems are pointed out, and the targeted countermeasures are further put forward. Some ideas for the further application of tracer technology are also proposed.
引文
[1]李伟,朱庆俊,王洪磊,等.西南岩溶地区找水技术方法探讨[J].地质与勘探,2011,47(5):918-923.
    [2]李术才,周宗青,李利平,等.岩溶隧道突水风险评价理论与方法及工程应用[J].岩石力学与工程学报,2013,32(9):1858-1867.
    [3]李择卫.塞海湖水库库首岩溶渗漏问题研究[J].人民长江,2016,47(23):50-54.
    [4]李术才,李晓昭,靖洪文,等.深长隧道突水突泥重大灾害致灾机理及预测预警与控制理论研究进展[J].中国基础科学,2017,19(3):27-43.
    [5] DIVINE C E, MCDONNELL J J. The future of applied tracers in hydrogeology[J]. Hydrogeology Journal,2005,13(1):255-258.
    [6] MOSTHAF K, BRAUNS B, FJORDBGE A S, et al. Conceptualization of flow and transport in a limestone aquifer by multiple dedicated hydraulic and tracer tests[J]. Journal of Hydrology,2018,561:532-546.
    [7]吴志伟,宋汉周.地下水温度示踪理论与方法研究进展[J].水科学进展,2011,22(5):733-740.
    [8]杨平恒,袁道先,蓝家程,等.基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J].西南大学学报:自然科学版,2013,35(2):103-108.
    [9]王开然,姜光辉,郭芳,等.桂林东区峰林平原岩溶地下水示踪试验与分析[J].现代地质,2013,27(2):454-459.
    [10] SCHNEGG P A, COSTA R. Tracer tests made easier with field fluorometers[J]. Bulletin d'Hydrogeologie,2005(20):1-2.
    [11]杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下水示踪试验中的应用———以青木关地下河系统岩口落水洞至姜家泉段为例[J].中国岩溶,2008,27(3):215-220.
    [12]陈雪彬,周军,蓝家程,等.基于在线示踪技术的岩溶地下河流场反演与水文地质参数估算[J].中国岩溶,2013,32(2):148-152.
    [13]徐尚全,王鹏,焦杰松,等.高精度在线示踪技术在岩溶地下水文调查中的应用[J].工程勘察,2013,41(2):40-44.
    [14]吕全标,胡晓农,曹建华,等.基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J].中国岩溶,2017,36(5):727-735.
    [15]于正良,杨平恒,谷海华,等.基于在线高分辨率示踪技术的岩溶泉污染来源及含水介质特征分析———以重庆黔江区鱼泉坎为例[J].中国岩溶,2014,33(4):498-503.
    [16] DONG H, CHEN J, LI X. Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests[J]. Engineering Geology,2016,212:136-145.
    [17]姜光辉,郭芳,汤庆佳,等.人工示踪技术在岩溶地区水文地质勘察中的应用[J].南京大学学报:自然科学版,2016,52(3):503-511.
    [18] BATTAGLIA D, BIRINDELLI F, RINALDI M, et al. Fluorescent tracer tests for detection of dam leakages:The case of the Bumbuna dam-Sierra Leone[J]. Engineering Geology,2016,205:30-39.
    [19] LI X Z, ZHANG P X, HE Z C, et al. Identification of geological structure which induced heavy water and mud inrush in tunnel excavation:A case study on Lingjiao tunnel[J]. Tunnelling&Underground Space Technology,2017,69:203-208.
    [20]王伟,苗德海.宜万铁路齐岳山隧道F11高压富水断层特征及工程对策[J].铁道标准设计,2010(8):81-86.
    [21]郭佳奇,王光勇,任连伟.宜万铁路岩溶地质特征及其发育模式[J].中国地质灾害与防治学报,2013,24(2):72-78.
    [22]范威,王川,金晓文,等.吉莲高速公路钟家山隧道涌突水条件分析[J].水文地质工程地质,2015,42(2):38-43,51.
    [23]於开炳,徐蔓,严竞雄,等.地下水示踪试验在岩溶隧道勘察中的应用———以利万高速齐岳山隧道为例[J].工程勘察,2017,45(10):46-51.
    [24] ZHANG P X, HUANG Z, LIU S, XU T S. Study on the control of underground rivers by reverse faults in tunnel site and selection of tunnel elevation[J]. Water,2019,11(5):889.
    [25]张培兴,李晓昭,章杨松,等.综合物探与摄影测量的预选场址断裂影响范围研究[J].防灾减灾工程学报,2017,37(6):987-993,1000.
    [26] ZHANG P X, LI X Z, HUANG Z, et al. Influence of fault zone on the respect distance and margin for excavation:a case study of the F4 fault in the Jijicao rock block, China[J]. Bulletin of Engineering Geology&the Environment,2019,78(4):2653-2669.
    [27]张培兴.花岗岩场址岩体结构面渗透特性及断裂影响范围研究[D].南京:南京大学,2018.
    [28]张培兴,李晓昭.一种原位钻孔岩体结构面可视化示踪试验装置[P].中国,ZL201721406800. 9,2018-05-04.
    [29] HJERNE C, NORDQVIST R, HARRSTRM J. Compilation and analyses of results from cross-hole tracer tests with conservative tracers[R]. Stockholm:Swedish Nuclear Fuel and Waste Management Co,2010.
    [30]周志芳,王锦国,黄勇.裂隙介质水动力学原理[M].北京:高等教育出版社,2007.
    [31]林统,陈建生,陈亮.土石坝下伏基岩交错断层导水示踪研究[J].岩石力学与工程学报,2009,28(S2):3645-3652.
    [32]张培兴,李晓昭,宋金龙.无人机在高放废物处置预选区不同尺度结构面调查中的应用[J].工程勘察,2017,45(12):40-44.
    [33]王锡勇,李冬伟,成功,等.高放废物地质处置的岩体深部结构面特征研究———以甘肃北山高放废物地质处置地下实验室工程为例[J].物探与化探,2018,42(3):481-490.