低温对枇杷苗叶片与根尖的生理状况及超微结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Low Temperature on Physiological and Cell Ultrastructure of Leaves and Roots of Eriobotrya japonica Seedlings
  • 作者:杜丽 ; 牛先前 ; 林晓红 ; 张玉容 ; 郑国华
  • 英文作者:DU Li-jun;NIU Xian-qian;LIN Xiao-hong;ZHANG Yu-rong;ZHENG Guo-hua;Zhangzhou City College;College of Horticulture, Fujian Agriculture and Forestry University;Fujian Science Technology of Tropical Crops;
  • 关键词:枇杷 ; 低温胁迫 ; 叶肉细胞 ; 根细胞 ; 超微结构
  • 英文关键词:Eriobotrya japonica;;Low temperature stress;;Mesophyll cell;;Root cell;;Ultrastructure
  • 中文刊名:RYZB
  • 英文刊名:Journal of Tropical and Subtropical Botany
  • 机构:漳州城市职业学院;福建农林大学园艺学院;福建省热带作物科学研究所;
  • 出版日期:2019-07-15
  • 出版单位:热带亚热带植物学报
  • 年:2019
  • 期:v.27
  • 基金:国家科技支撑计划项目(2014BAD15B00);; 福建省中青年教师教育科研项目(JAT171150);; 漳州市自然科学基金计划项目(ZZ2017J42)资助~~
  • 语种:中文;
  • 页:RYZB201904015
  • 页数:9
  • CN:04
  • ISSN:44-1374/Q
  • 分类号:108-116
摘要
为探讨枇杷(Eriobotrya japonica)苗对低温伤害的响应,采用人工降温的方法,研究了‘解放钟’实生枇杷苗在低温胁迫下叶肉细胞与根细胞超微结构的变化,同时测定叶片褐变率、根系活力和细胞质膜相对透性(PMP)。结果表明,轻度低温(0℃)胁迫12h,根系活力下降26.09%,叶片褐变率仅升高17.15%,根系PMP值持续升高而叶片呈下降趋势。电镜下观察,根细胞和叶肉细胞均有明显线粒体增加现象。0℃胁迫36 h根细胞发生胞间结冰,液泡消失、线粒体膨大变形、双层膜消失、嵴消失、细胞壁结构损伤,而叶肉细胞仅表现叶绿体破坏、淀粉粒变小,线粒体完整。重度低温(–3℃、–5℃)胁迫下,根细胞和叶肉细胞均发生细胞内结冰,且低温对根细胞的破坏程度明显高于叶肉细胞,根细胞比叶细胞发生细胞结冰的时间更早,受害更严重。这表明根细胞比叶肉细胞对低温更敏感,因此,在低温来临前对枇杷地下部采取保温措施,对缓解地上部低温伤害具有积极作用。
        In order to understand the response to low temperature of loquat(Eriobotrya japonica) seedlings, the changes in cell ultrastructure of leaves and roots of 'Jiefangzhong' seedlings were studied under cold stress by artificial cooling, and leaf browning rate, root activity as well as plasma membrane permeabilities(PMPs) were measured. The results showed that the root activity decreased by 26.09%, and the leaf browning rate increased by 17.15% under light cold stress(0℃). The PMP of root increased and the PMP of leaf decreased. The number of mitochondria had significant increment in root and mesophyll cells under electron microscope, indicating that mesophyll cells and root cells resisted low temperature injury by enhancing respiration and energy metabolism.The intercellular freezing in roots was appeared at 0℃ for 36 h, causing vacuoles disappearance, mitochondrial enlargement, double membrane and cristae disappearance, cell wall structure damage, but in mesophyll cells,chloroplast destruction, starch grains became small, and mitochondria intact. Intracellular freezing would be caused in root cells and mesophyll cells at sever low temperature(-3℃,-5℃), and the damage degree in root cell wall under low temperature was more serious than that in mesophyll cell wall. The time of intracellular freezing in root cells was earlier than that in mesophyll cells. These were indicated that the root cell was high sensitive than mesophyll cell to low temperature. Thus, the insulation measure to underground parts of loquat before low temperature had positive roles in mitigating the injury to the aboveground parts.
引文
[1]ZHENG G H,ZHANG H Y.Changes in ultrastructure of Eriobotrya japonica leaves under differt lower temperature stress[J].Acta Agric Univ Jiangxi,2008,30(5):783-786.doi:10.3969/j.issn.1000-2286.2008.05.005.郑国华,张贺英.不同低温胁迫下枇杷叶片细胞超微结构的变化[J].江西农业大学学报,2008,30(5):783-786.doi:10.3969/j.issn.1000-2286.2008.05.005.
    [2]NIU X Q,DU L J,ZHENG G H.Effects of ecogenous Ca2+on the intracellular calcium distribution and antioxidant enzymes activities of Eriobotrya japonica seedlings and leaves[J].Fujian J Agric Sci,2013,28(8):770-775.doi:10.19303/j.issn.1008-0384.2013.08.009.牛先前,杜丽君,郑国华.外源Ca2+对枇杷苗叶细胞钙分布及抗氧化系统的影响[J].福建农业学报,2013,28(8):770-775.doi:10.19303/j.issn.1008-0384.2013.08.009.
    [3]ZHENG G H,PAN D M,NIU X Q,et al.Changes in cell Ca2+distribution in loquat leaves and its effects on cold tolerance[J].Kor JHort Sci Technol,2014,32(5):607-613.doi:10.7235/hort.2014.13009.
    [4]CHEN Y Q,YE B Y,GAO Y P,et al.Changes of the level of Ca2+in cells of loquat leaflets under low temperature stress[J].J Wuhan Bot Res,2000,18(2):138-142.doi:10.3969/j.issn.2095-0837.2000.02.011.陈由强,叶冰莹,高一平,等.低温胁迫下枇杷幼叶细胞内Ca2+水平及细胞超微结构变化的研究[J].武汉植物学研究,2000,18(2):138-142.doi:10.3969/j.issn.2095-0837.2000.02.011.
    [5]WU J C,CHEN Y,WU B S,et al.Effects of calcium on Ca2+-ATPase activity and lipid peroxidation level of loquat seedling under low temperature stress[J].J NW Agric For Univ(Nat Sci),2016,44(2):121-128.doi:10.13207/j.cnki.jnwafu.2016.02.017.吴锦程,陈宇,吴毕莎,等.钙处理对低温胁迫下枇杷幼苗Ca2+-ATPase活性和膜脂过氧化水平的影响[J].西北农林科技大学学报(自然科学版),2016,44(2):121-128.doi:10.13207/j.cnki.jnwafu.2016.02.017.
    [6]ZHENG G H,ZHANG H Y,ZHONG X R.Changes in cell ultrastructure,membrane permeability and protective enzyme activity in Eriobotrya japonica Lindl.leaves under cold stress[J].Chin J EcoAgric,2009,17(4):739-745.doi:10.3724/SP.J.1011.2009.00739.郑国华,张贺英,钟秀容.低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化[J].中国生态农业学报,2009,17(4):739-745.doi:10.3724/SP.J.1011.2009.00739.
    [7]ZHENG G H,ZHANG H Y.Ultrastructural changes of Jiefangzhong loquat young fruits under low temperature stress[J].J Putian Univ,2008,15(2):52-55.doi:10.3969/j.issn.1672-4143.2008.02.013.郑国华,张贺英.低温胁迫下解放钟枇杷幼果细胞超微结构的变化[J].莆田学院学报,2008,15(2):52-55.doi:10.3969/j.issn.1672-4143.2008.02.013.
    [8]NIU X Q,ZHENG G H,LIN X X,et al.Effect of INA bacteria on pulp cell ultrastructure of young loquat fruit[J].Chin J Eco-Agric,2010,19(2):388-393.doi:10.3724/SP.J.1011.2011.00388.牛先前,郑国华,林秀香,等.冰核细菌对低温胁迫下枇杷幼果中果肉超微结构的影响[J].中国生态农业学报,2011,19(2):388-393.doi:10.3724/SP.J.1011.2011.00388.
    [9]WANG H,PENG J P,FANG S M,et al.Relationship between ice nucleation bacteria in loquat and frost[J].Plant Prot,2008,34(2):43-46.doi:10.3969/j.issn.0529-1542.2008.02.011.王慧,彭建平,方树民,等.枇杷幼果中定殖的冰核细菌与冻害关系[J].植物保护,2008,34(2):43-46.doi:10.3969/j.issn.0529-1542.2008.02.011.
    [10]ZHENG G H,NIU X Q,FANG S M.Influence of INA bacteria on the content of endogenous hormones in loquat fruit[J].Chin J Trop Crops,2009,30(3):259-263.doi:10.3969/j.issn.1000-2561.2009.03.003.郑国华,牛先前,方树民.冰核细菌对枇杷幼果中内源激素的影响[J].热带作物学报,2009,30(3):259-263.doi:10.3969/j.issn.1000-2561.2009.03.003.
    [11]YANG W,GONG R G,LIAO M A,et al.Effects of low temperature stress on antioxidant enzyme system and microstructure of young loquat fruit[J].J NW Agric For Univ(Nat Sci),2016,44(4):195-202.doi:10.13207/j.cnki.jnwafu.2016.04.026.杨伟,龚荣高,廖明安,等.低温胁迫对枇杷幼果抗氧化酶系统和组织结构的影响[J].西北农林科技大学学报(自然科学版),2016,44(4):195-202.doi:10.13207/j.cnki.jnwafu.2016.04.026.
    [12]ZHENG G H,ZHANG H Y.Effects of chilling stress on cell ultrastructure and membrane permeability and protective enzyme activity in young loquat fruits[J].Chin J Trop Crops,2009,29(6):730-737.doi:10.3969/j.issn.1000-2561.2008.06.011.郑国华,张贺英.低温胁迫对枇杷幼果细胞超微结构及膜透性和保护酶活性的影响[J].热带作物学报,2009,29(6):730-737.doi:10.3969/j.issn.1000-2561.2008.06.011.
    [13]ZHENG G H,PAN D M,NIU X Q,et al.Effect of low temperature stress and INA bacteria on parameters of photosynthesis and chlorophyll fluorescence in loquat leaf[J].Chin J Eco-Agric,2010,18(6):1251-1255.doi:10.3724/SP.J.1011.2010.01251.郑国华,潘东明,牛先前,等.冰核细菌对低温胁迫下枇杷光合参数和叶绿素荧光参数的影响[J].中国生态农业学报,2010,18(6):1251-1255.doi:10.3724/SP.J.1011.2010.01251.
    [14]WU H B,ZHENG G H,NIU X Q,et al.Isolation of the cold stress genes in loquat fruit by DDRT-PCR technique[J].Chin J Trop Crops,2010,31(3):416-421.doi:10.3969/j.issn.1000-2561.2010.03.015.吴海波,郑国华,牛先前,等.DDRT-PCR技术分离枇杷幼果低温诱导相关基因[J].热带作物学报,2010,31(3):416-421.doi:10.3969/j.issn.1000-2561.2010.03.015.
    [15]XU H X,CHEN J W,YANG Y,et al.Isolation and expression analysis of DHN gene in loquat fruit under cold stress[J].Acta Hort Sin,2011,38(6):1071-1080.doi:10.16420/j.issn.0513-353x.2011.06.011.徐红霞,陈俊伟,杨勇,等.枇杷果实DHN基因克隆及其在低温胁迫下的表达分析[J].园艺学报,2011,38(6):1071-1080.doi:10.16420/j.issn.0513-353x.2011.06.011.
    [16]YANG W,GONG R G,SHI J J,et al.De novo assembly and functional annotation of the loquat young fruit transcriptome under chilling stress[J].J NW Agric For Univ(Nat Sci),2014,42(8):138-146.doi:10.13207/j.cnki.jnwafu.2014.08.013.杨伟,龚荣高,石佳佳,等.低温胁迫下枇杷幼果转录组的de novo组装和功能注释[J].西北农林科技大学学报(自然科学版),2014,42(8):138-146.doi:10.13207/j.cnki.jnwafu.2014.08.013.
    [17]ZHENG G H,NIU X Q,ZHANG J B,et al.Differential frost tolerance and enzymatic activities in the leaves and immature fruits of loquat(Eriobotrya japonica Lindl.)[J].Kor J Hort Sci Technol,2015,33(3):309-316.doi:10.7235/hort.2015.13062.
    [18]ZHAN S X,ZHENG S X,WANG Y et al.Response and correlation of above-and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions[J].Chin J Plant Ecol,2016,40(1):36-47.doi:10.17521/cjpe.2015.0164.詹书侠,郑淑霞,王扬,等.羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联[J].植物生态学报,2016,40(1):36-47.doi:10.17521/cjpe.2015.0164.
    [19]SUN L L,GENG Q W,XING H,et al.Effect of low temperature treatments in root of grapevine on PSII activity in leaves[J].Chin Bull Bot,2017,52(2):159-166.doi:10.11983/CBB16030.孙鲁龙,耿庆伟,邢浩,等.低温处理葡萄根系对叶片PSII活性的影响[J].植物学报,2017,52(2):159-166.doi:10.11983/CBB16030.
    [20]SUZUKI K,OHMORI Y,NAGAO M.Accumulation of nitrate and nitrite in chilled leaves of rice seedlings is induced by high root temperature[J].Plant Cell Physiol,2013,54(11):1769-1779.doi:10.1093/pcp/pct120.
    [21]YU X C,XING Y X,MA H,et al.Effect of different rootstocks and scions on chilling tolerance in grafted cucumber seedlings[J].Sci Agric Sin,1998,31(2):41-47.doi:10.3321/j.issn:0578-1752.1998.02.008.于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响[J].中国农业科学,1998,31(2):41-47.doi:10.3321/j.issn:0578-1752.1998.02.008.
    [22]ZHANG X Y,XU K.Effect of interaction between rootstock and scion on chilling tolerance of grafted eggplant seedlings under low temperature and light conditions[J].Sci Agric Sin,2009,42(10):3734-3740.doi:10.3864/j.issn.0578-1752.2009.10.0045.张晓艳,徐坤.低温弱光条件下砧穗互作对茄子嫁接苗抗冷性的影响[J].中国农业科学,2009,42(10):3734-3740.doi:10.3864/j.issn.0578-1752.2009.10.0045.
    [23]TRAMONTINI S,VITALI M,CENTIONI L,et al.Rootstock control of scion response to water stress in grapevine[J].Environ Exp Bot,2013,93:20-26.doi:10.1016/j.envexpbot.2013.04.001.
    [24]XIE Z C,LI J.Definition on freezing injury temperature of 'Zaozhong6' loquat young fruits and division of suitable cultivating area[J].Fujian Fruits,2006(1):7-11.谢钟琛,李健.早钟6号枇杷幼果冻害温度界定及其栽培适宜区区划[J].福建果树,2006(1):7-11.
    [25]ZHANG Z L,ZHAI W J.The Experimental Guide for Plant Physiology[M].3rd ed.Beijing:Higher Education Press,2003:37-38.张志良,翟伟菁.植物生理学实验指导[M].第3版.北京:高等教育出版社,2003:37-38.
    [26]LI H S.Principles and Techniques of Plant Physiological Biochemical[M].Beijing:Higher Education Press,2000:258-263.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:258-263.
    [27]HAN S H,WANG S.Origin of vesicular inclusions in the vacuoles of Ammopiptanthus mongolicus[J].Acta Bot Boreali-Occid Sin,2005,25(6):1072-1076.doi:10.3321/j.issn:1000-4025.2005.06.002.韩善华,王双.冬季沙冬青叶肉细胞液泡中泡状内含物的研究[J].西北植物学报,2005,25(6):1072-1076.doi:10.3321/j.issn:1000-4025.2005.06.002.
    [28]ZHANG W J,HUANG Z L,ZHANG X Q,et al.Effect of freeze injury on cell structure in tiller node of different types of winter wheat in Yangtze-Huaihe Region[J].J Trit Crop,2012,32(5):918-922.doi:10.7606/j.issn.1009-1041.2012.05.019.张文静,黄正来,张向前,等.江淮地区低温冻害对不同类型小麦幼茎细胞结构的影响[J].麦类作物学报,2012,32(5):918-922.doi:10.7606/j.issn.1009-1041.2012.05.019.
    [29]LEVITT J.Responses of Plants to Environmental Stress,Chilling,Freezing and High Temperature Stresses[M].New York:Academic Press,1980:497-512.
    [30]STEPONKUS P L.Role of the plasma membrane in freezing injury and cold acclimation[J].Ann Rev Plant Physiol,1984,35(1):543-584.doi:10.1146/annurev.pp.35.060184.002551.
    [31]XU W,YANG J,ZHENG M M,et al.Changes of cell structure and the surface glycoproteins in the leaves of wheat under cold stress at tillering stage[J].J Trit Crop,2014,34(3):403-411.doi:10.7606/j.issn.1009-1041.2014.03.18.徐雯,杨景,郑明明,等.低温胁迫下分蘖期小麦叶片细胞结构及表面糖蛋白的变化[J].麦类作物学报,2014,34(3):403-411.doi:10.7606/j.issn.1009-1041.2014.03.18.
    [32]HERMAN E M,ROTTER K,PREMAKUMAR R,et al.Additional freeze hardiness in wheat acquired by exposure to-3℃is associated with extensive physiological,morphological,and molecular changes[J].J Exp Bot,2007,58(6):1557-1557.doi:10.1093/jxb/erm088.
    [33]ZHANG B C,ZHOU Y H.Plant cell wall formation and regulation[J].Sci Sin Vit,2015,45(6):544-556.doi:10.1360/N052015-00076.张保才,周奕华.植物细胞壁形成机制的新进展[J].中国科学:生命科学,2015,45(6):544-556.doi:10.1360/N052015-00076.