蜈蚣草对砷锑镉的富集效果及体内存在形态研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Enrichment Effect and the Vivo Existing Form in Vivo of As, Sb and Cd in Pteris vittata L.
  • 作者:朱桓毅 ; 杨爱江 ; 胡霞 ; 徐鹏 ; 邓秋静 ; 范佳宇
  • 英文作者:ZHU Huanyi;YANG Aijiang;HU Xia;XU Peng;DENG Qiujing;FAN Jiayu;College of Resources and Environment, Guizhou University;Institute of Environmental Engineerting Planing and Designing, Guizhou University;
  • 关键词:蜈蚣草 ; 水培 ; 转运能力 ; 重金属形态 ; 多金属互作 ; 拮抗作用
  • 英文关键词:Pteris vittata;;hydroponics;;transport capacity;;heavy metal extraction;;polymetallic interaction;;antagonism
  • 中文刊名:GDNY
  • 英文刊名:Guangdong Agricultural Sciences
  • 机构:贵州大学资源与环境工程学院;贵州大学环境工程规划设计研究所;
  • 出版日期:2019-07-02 16:15
  • 出版单位:广东农业科学
  • 年:2019
  • 期:v.46
  • 基金:贵州省教育厅省级重点学科建设项目(黔学位合字ZDXK〔2016〕11);贵州省教育厅自然科学研究项目(黔教合KY字〔2016〕011);; 贵州省国内生态学一流学科建设项目(GNYL〔2017〕007);; 贵州省科技合作基金(黔科合LH字〔2016〕7460号)
  • 语种:中文;
  • 页:GDNY201906010
  • 页数:11
  • CN:06
  • ISSN:44-1267/S
  • 分类号:74-84
摘要
【目的】探究在水培条件下,蜈蚣草受到As、Sb、Cd单一胁迫及交互胁迫后,对其富集特征及体内的赋存形态变化。【方法】选用重金属耐受植物蜈蚣草为载体,利用改良霍格兰营养液水培7 d,通过不同梯度As、Sb、Cd胁迫探究富集特征,并探究浓度为50 mg/L时不同处理条件下As、Sb、Cd在蜈蚣草中的赋存形态特征。【结果】重金属单一胁迫下,蜈蚣草地下部As、Sb、Cd富集浓度最大值分别为337.56、7 020.90、2 742.58 mg/kg,地上部最大富集浓度分别为886.60、3 058.60、4 045.80 mg/kg,蜈蚣草仅对As的转移系数稳定> 1;在浓度50 mg/L下,单一胁迫或交互胁迫时,蜈蚣草体内As乙醇态与盐酸态浓度占比为69.49%~94.25%,Sb残渣态浓度占比为47.48%~78.36%,Cd盐酸态浓度占比为93.67%~98.46%;加入Sb后,蜈蚣草地下部、地上部对As的吸附浓度分别提高60.83、144.40 mg/kg,As、Cd的加入能大幅降低蜈蚣草根、茎、叶中Sb乙醇态浓度,降幅为72.9%~97.0%,As、Sb的加入会促进蜈蚣草根部Cd盐酸态浓度,升幅达38.2%~206.5%。【结论】蜈蚣草对Sb、Cd的富集能力较强,但仅为高富集作用。在胁迫浓度50 mg/L下,蜈蚣草体内As以乙醇提取态与盐酸提取态为主,Sb以残渣态为主,Cd以盐酸提取态为主,Sb可以提高蜈蚣草对As的富集能力,As、Cd对Sb毒性具有拮抗作用,As、Sb对蜈蚣草根部Cd盐酸态有促进作用,蜈蚣草对As、Sb复合污染的土壤具有更好的修复能力。
        【Objective】 The study was conducted to explore the enrichment characteristics and extraction changes of Pteris vittata in vivo with the single and interactive treatment of As, Sb and Cd under hydroponiculture conditions.【Method】 The heavy metal tolerant plant P. vittata was selected as the carrier, and it was cultivated in hydroponics for 7 days with the improved-hoagland nutrient solution. The enrichment characteristics of As, Sb and Cd in different concentrations under adversity stress was explored. And the morphological characteristics of As, Sb and Cd in P. vittata under different treatment conditions were studied when the concentration of 50 mg/L. 【Result】Under single heavy metal adversity stress, the maximum enrichment concentrations of As, Sb and Cd in the underground parts of the P. vittata were 337.56,7 020.9, 2 742.58 mg/kg, and the maximum enrichment concentrations in the aboveground parts were 886.6, 3 058.6, and 4 045.8 mg/kg, respectively. Only the transfer coefficient of the P. vittata to As is stably larger than 1. At the concentration of 50 mg/L and under the single stress or polymetallic interactive stress, the concentration of As in ethanol and hydrochloric acid in P. vittata was 69.49%-94.25%, the concentration of Sb residue was 47.48%-78.36%, and the concentration of Cd in hydrochloric acid state was 93.67%-98.46%. When Sb was added, the adsorption concentrations of the underground and aboveground parts of the P. vittata to As were increased by 60.83 mg/kg and 144.40 mg/kg, respectively. The addition of As and Cd significantly reduced the concentration of Sb in the roots, stems and leaves of the P. vittata by 72.9%-97.0%. The addition of As and Sb increased the concentration of Cd hydrochloric acid in the roots of the P. vittata by 38.2%-206.5%. 【Conclusion】P. vittata has a strong enrichment ability for Sb and Cd, but only a high enrichment effect. Under the adversity stress concentration of 50 mg/L, As in the P. vittata is mainly in a state of ethanol extraction and hydrochloric acid extraction, Sb is mainly in a state of residue form,Cd in a state of hydrochloric acid extraction condition. Sb can improve the enrichment ability of P. vittata to As. As and Cd are antagonistic to the toxicity of Sb, and As and Sb can improve the Cd in hydrochloric acid state of the P. vittata roots. P. vittata can better restore the soil polluted by As and Sb.
引文
[1]莫昌琍,吴丰昌,符志友,朱静,冉靓.湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J].矿物学报,2013,33(3):344-350.doi:10.16461/j.cnki.1000-4734.2013.03.005.MO C L,WU F C,FU Z Y,ZHU J,RAN L.Antimony,arsenic and mercury polluton in agricultural soil of antimony mine area in Xikuangshan,Hunan[J].Acta Mieralogica Sinica,2013,33(3):344-350.doi:10.16461/j.cnki.1000-4734.2013.03.005.
    [2]谢李娜,周建伟,郝春明,刘慧林,NYIRENDA M T,鲁槚银,李立刚,朱越.湘中锡矿山北矿区地下水化学特征及污染成因[J].地质科技情报,2016,35(2):197-202.XIE L N,ZHOU J W,HAO C M,LIU H L,NYIRENDA M T,LU J Y,LIL G,ZHU Y.Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan Antimany Mine,Hunan Province[J].Geological Science and Technology Information,2016,35(2):197-202.
    [3]MEHARG A A.Trace elements in soils and plants[J].Experimental Agriculture,2011,47(4):739.doi:10.1201/b10158.doi:10.1201/b10158.
    [4]MCL AR EN R G,NAIDU R,SMITH J.Fractionation and distribution of arsenic in soils contaminated by cattle dip[J].Journal of Environment Quality,1998,27(2):348.doi:10.2134/jeq1998.00472425002700020015x.
    [5]NEWBIGGING M A,PALIWODA E R,CHRIS L X.Rice:Reducing arsenic content by controlling water irrigation[J].Journal of Environmental Sciences,2015,30(4):131-133.doi:10.1016/j.jes.2015.03.001.
    [6]袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用[J].中南林学院学报,2005(1):81-85.doi:10.3969/j.issn.1673-923X.2005.01.019.YUAN M,TIE B Q,TANG M Z.Application of phyto-remediation and its combination technologyto remediating heavy-metal contaminated soil[J].Journal of Central South Forestry University,2005(1):81-85.doi:10.3969/j.issn.1673-923X.2005.01.019.
    [7]宋勇进,张新英,韦业川,熊丹.基于文献数据的广西不同功能区土壤镉含量特征研究[J].广西师范学院学报(自然科学版),2018(4):1-6.SONG Y J,ZHANG X Y,WEI Y C,XIONG D.Characteristics of cadmium content in soils of different functional areas in Guangxi based on literature data[J].Journal of Guangxi Teachers Education University:Natural Science Edition,2018(4):1-6.
    [8]郭勇,童艳君.我国农业土壤重金属污染现状及防治对策[J].现代农业科技,2012(18):222-223.doi:10.3969/j.issn.1007-5739.2012.18.145.GUO Y,TONG Y J.Current situation of heavy metal pollution in agricultural soil in China and its countermeasures[J].Modern Agricultural Technology,2012(18):222-223.doi:10.3969/j.issn.1007-5739.2012.18.145.
    [9]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学,1999(5):392-396.doi:10.3321/j.issn:1000-6923.1999.05.003.DAI S G,DONG L,WANG Z.Adsorption behavior of surfactant on soil particles[J].China Environmental Science,1999(5):392-396.doi:10.3321/j.issn:1000-6923.1999.05.003.
    [10]廖晓勇,陈同斌,阎秀兰,谢华,肖细元,翟丽梅.不同磷肥对砷超富集植物蜈蚣草修复砷污染土壤的影响[J].环境科学,2008(10):2906-2911.doi:10.3321/j.issn:0250-3301.2008.10.038.LIAO X Y,CHEN T B,YAN X N,XIE H,XIAO X Y,ZHAIL M.Effects of different phosphate fertilizers on the repair of arsenic-contaminated soil by the arsenic-rich plant centipede[J].Environmental Science,2008(10):2906-2911.doi:10.3321/j.issn:0250-3301.2008.10.038.
    [11]陈同斌,李海翔,雷梅,武斌,宋波,张学洪.植物修复过程中蜈蚣草对土壤养分的吸收动态:5年田间定位试验[J].环境科学学报,2010(2):402-408.CHEN T B,LI H X,LEI M,WU B,SONG B,ZHANG X H.Dynamics of soil nutrient uptake by centipedes during phytoremediation:5 years field experiment[J].Journal of Environmental Science,2010(2):402-408.
    [12]李影,刘鹏.Cd胁迫对3种蕨类植物生理代谢及镉累积特性的影响[J].水土保持学报,2016(3):128-133.doi:10.13870/j.cnki.stbcxb.2016.03.023.LI Y,LIU P.Effects of Cd stress on physiological metabolism and cadmium accumulation of three ferns[J].Journal of Soil and Water Conservation,2016(3):128-133.doi:10.13870/j.cnki.stbcxb.2016.03.023.
    [13]冯人伟.植物对砷、硒、锑的富集及抗性机理研究[D].武汉:华中农业大学,2009.doi:10.7666/d.Y1598625.FENG R W.Enrichment and resistance mechanism of arsenic,selenium and antimony in plants[D].Wuhan:Huazhong Agricultural University,2009.doi:10.7666/d.Y1598625.
    [14]许嘉琳,鲍子平,杨居荣,刘虹,宋文昌.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991(3):244-248.XU J L,BAO Z P,YANG J R,LIU H,SONG W C.Study on chemical morphology of lead,cadmium and copper in crops[J].Journal of Applied Ecology,1991(3):244-248.
    [15]吴慧梅,李非里,牟华倩,张慧.两步连续提取法测定植物中重金属的形态[J].环境科学与技术,2012(7):133-137.doi:10.3969/j.issn.1003-6504.2012.07.030.WU H M,LI F L,MU H Q,ZHANG H.The morphology of heavy metals in plants was determined by two-step continuous extraction method[J].Environmental Science and Technology,2012(7):133-137.doi:10.3969/j.issn.1003-6504.2012.07.030.
    [16]TISARUM R,LESSL JT,DONG X.Antimony uptake,efflux and speciation in arsenic hyperaccumulator Pteris Vittata[J].Environmental Pollution,2014,186(1):110-114.doi:10.1016/j.envpol.2013.11.033.
    [17]WAN X,LEI M,YANG J.Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province,China[J].Catena,2017,148(1):67-73.doi:10.1016/j.catena.2016.02.005.
    [18]敖明,柴冠群,刘桂华,秦松,范成五.水稻对镉的吸收与转运规律研究进展[J].南方农业,2018,12(24):127-128,131.doi:10.19415/j.cnki.1673-890x.2018.24.068.AO M,CHAI G Q,LIU G H,QIN S,FAN C W.Research progress on cadmium uptake and transport in rice[J].Southern Agriculture,2018,12(24):127-128,131.doi:10.19415/j.cnki.1673-890x.2018.24.068.
    [19]MIHUCZ V G,TATáR E,KMETHY B.Investigation of the transported heavy metal ions in xylem sap of cucumber plants by size exclusion chromatography and atomic absorption spectrometry[J].Journal of Inorganic Biochemistry,2000,81(1):81-87.doi:10.1016/S0162-0134(00)00091-X.
    [20]BROOKS R,LEE J,REEVES R.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J].Journal of Geochemical Exploration,1977,7(1):49-57.doi:10.1016/0375-6742(77)90074-7.
    [21]侯晓龙.铅超富集植物金丝草对Pb胁迫的响应机制研究[D].福州:福建农林大学,2013.HOU X L.Study on response mechanism of Pb stress in hyperlead-enriched auricularia auriculata[D].Fuzhou:Fujian University of Agriculture and Forestry,2013.
    [22]杨树深,杨军,杨俊兴,万小铭,雷梅,陈同斌,刘树庆.土壤添加剂对蜈蚣草吸收转运铅、镉的影响[J].生态学杂志,2017,11(6):1650-1657.doi:10.13292/j.1000-4890.201706.022.YANG S S,YANG J,YANG J X,WAN X M,LEI M,CHEN T B,LIUS S.Effects of soil additives on the uptake and transport of lead and cadmium in centipede grass[J].Journal of Ecology,2017,11(6):1650-1657.doi:10.13292/j.1000-4890.201706.022.
    [23]韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,8(5):777-778.doi:10.3321/j.issn:1000-0933.2002.05.022.WEI C Y,CHEN T B,HUANG Z C,ZHANG X Q.A newly discovered arsenic-rich plant,Esparto macrophylla[J].Acta Ecologica Sinica,2002,8(5):777-778.doi:10.3321/j.issn:1000-0933.2002.05.022.
    [24]安志装,陈同斌,雷梅,肖细元,廖晓勇.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,9(12):2594-2598.doi:10.3321/j.issn:1000-0933.2003.12.013.AN Z Z,CHEN T B,LEI M,XIAO X Y,LIAO X Y.Study on the toxicity and repair ability of centipede grass to lead,copper and zinc[J].Acta Ecologica Sinica,2003,9(12):2594-2598.doi:10.3321/j.issn:1000-0933.2003.12.013.
    [25]章金鸿,李玫.植物对金属镉的吸收、分配及其影响因素[J].广州环境科学,1999,5(3):28-32.ZHANG J H,LI M.Absorption,distribution and influencing factors of cadmium in plants[J].Guangzhou Environmental Science,1999,5(3):28-32.
    [26]陈同斌,阎秀兰,廖晓勇,肖细元,黄泽春,谢华,翟丽梅.蜈蚣草中砷的亚细胞分布与区隔化作用[J].科学通报,2005,11(24):2739-2744.doi:10.3321/j.issn:0023-074X.2005.24.010.CHEN T B,YAN X L,LIAO X Y,XIAO X Y,HUANG Z C,XIE H,ZHAI L M.Subcellular distribution and compartmentalization of arsenic in centipede grass[J].Chinese Science Bulletin,2005,11(24):2739-2744.doi:10.3321/j.issn:0023-074X.2005.24.010.
    [27]陈亚慧,刘晓宇,王明新,王静,严新美.蓖麻对镉的耐性、积累及与镉亚细胞分布的关系[J].环境科学学报,2014,34(9):265-271.doi:10.13671/j.hjkxxb.2014.0545.CHEN Y H,LIU X Y,WANG M X,WANG J,YAN X M.The relationship between tolerance,accumulation and distribution of cadmium subcells in castor bean[J].Journal of Environmental Science,2014,34(9):265-271.doi:10.13671/j.hjkxxb.2014.0545.
    [28]WAN X M,LEI M,CHEN T B.Interaction of As and Sb in the hyperaccumulator Pteris vittata L.:Changes in As and Sb speciation by XANES[J].Springer Berlin Heidelberg,2016,23(19):19173-19181.doi:10.1007/s11356-016-7043-0.
    [29]王晓丽.植物中锑的积累过程及锑与砷的复合作用研究[D].武汉:华中农业大学,2012.doi:10.7666/d.Y2161997.WANG X L.Studies on the accumulation of antimony in plants and the complex action of antimony and arsenic[D].Wuhan:Huazhong Agricultural University,2012.doi:10.7666/d.Y2161997.
    [30]陈秋平,胥思勤,陈洁薇,吴贞术.晴隆锑矿区植物砷、锑形态分析[J].环境科学与技术,2014,37(8):71-75,98.CHEN Q P,XU S Q,CHEN J W,WU Z S.Morphological analysis of plant arsenic and antimony in qinglong antimony deposit area[J].Environmental Science and Technology,2014,37(8):71-75,98.
    [31]陈秋平,胥思勤,陈洁薇,吴贞术.锑矿区土壤重金属污染及植物累积特征[J].环境科技,2014(2):1-4.doi:10.3969/j.issn.1674-4829.2014.02.001.CHEN Q P,XU S Q,CHEN J W,WU Z S.Soil heavy metal pollution and plant accumulation in antimony deposit area[J].Environmental Science and Technology,2014(2):1-4.doi:10.3969/j.issn.1674-4829.2014.02.001.
    [32]丁振华,苏芳莉,孙权.Cd胁迫下芦苇体内氯化钠提取态镉及谷氨酰半胱氨酸合成酶活性研究[J].生态与农村环境学报,2018,34(12):1139-1144.doi:10.11934/j.issn.1673-4831.2018.12.011.DING Z H,SU F L,SUN Q.Study on the activities of cadmium and glutamyl cysteine synthase extracted from reed under the stress of Cd by sodium chloride[J].Journal of Ecology and Rural Environment,2018,34(12):1139-1144.doi:10.11934/j.issn.1673-4831.2018.12.011.
    [33]NISHIZONO H,ICHIKAWA H,SUZIKI S,ISHII F.The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J].Martinus Nijhoff Publishers,1987,101(1):15-20.doi:10.1007/bf02371025.