骨组织工程技术治疗感染性骨缺损:优势与问题
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bone tissue engineering in infectious bone defect:advantages and problems
  • 作者:占华松 ; 陈跃平 ; 章晓云
  • 英文作者:Zhan Huasong;Chen Yueping;Zhang Xiaoyun;Guangxi University of Chinese Medicine;Department of Traumatic Orthopedics and Hand Surgery,Ruikang Hospital, Guangxi University of Chinese Medicine;
  • 关键词:骨组织工程 ; 生物材料 ; 感染性骨缺损 ; 种子细胞 ; 抗菌药物 ; 缓释系统 ; 3D打印 ; 国家自然科学基金
  • 英文关键词:bone tissue engineering;;biomaterials;;infectious bone defect;;seed cells;;antibiotics;;sustained-release system;;3D printing;;National Natural Science Foundation of China
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:广西中医药大学;广西中医药大学附属瑞康医院创伤骨科与手外科;
  • 出版日期:2019-07-19
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.887
  • 基金:国家自然科学基金资助项目(81760796),项目负责人:陈跃平;; 广西自然科学基金课题(2015GXNSFAA139136),项目负责人:陈跃平;; 广西高校中青年教师科研基础能力(2019KY0352),项目负责人:章晓云;; 2017年广西中医药大学校级培养学科-骨外科学建设项目(04B2017082),项目负责人:陈跃平~~
  • 语种:中文;
  • 页:XDKF201930018
  • 页数:7
  • CN:30
  • ISSN:21-1581/R
  • 分类号:98-104
摘要
背景:随着现代技术及医疗水平的不断提高,用于治疗感染性骨缺损的途径虽然逐渐增多,然而困扰的难点却依然是缺少一种兼备抗感染、诱导骨折再生修复和可生物降解材料为一体的复合体,用于达到一期治疗目的措施;这也是未来医疗工作者奋进的目标和动力。目的:探讨骨组织工程技术治疗感染性骨缺损的应用及前景。方法:检索Pub Med、MEDLINE、万方、中国知网、维普及中国生物医学文献数据库2013至2019年相关国内外文献,内容包括:①局部抗生素临床运用及研究文献;②缓释系统治疗骨感染的实验研究文献;③生物支架材料在大段骨缺损中应用的临床及实验研究文献;④骨组织工程在修复感染性骨缺损中的应用及发展文献;⑤3D打印技术相关文献。共纳入60篇文献分析总结。结果与结论:①骨感染部位抗生素局部使用疗效可观;②骨组织工程在诱导骨再生修复骨缺损治疗中具有远大发展前景及潜力,为未来骨科医生治疗感染性骨缺损开辟了新道路,也给患者及其家属带来新希望,而探索最合适的优质种子细胞成为该项技术的突破点及挑战;③探索骨组织工程技术、抗菌药物和可吸收性生物材料完美契合的新技术治疗感染性骨缺损,是未来骨科临床治疗感染性骨缺损的全新发展方向。
        BACKGROUND: With the continuous improvement of modern technology and medical level, although there are many ways to treat infectious bone defects, there is a lack of a viable early treatment regimen that combines anti-inflammatory, fracture healing, and biodegradable therapies, for the purpose of primary treatment measures. This is also the goal and motivation of future medical workers.OBJECTIVE: To investigate the application and prospect of bone tissue engineering in the treatment of infectious bone defects.METHODS: Pub Med and MEDLINE database, Wan Fang, CNKI, VIP and CBM database were searched from 2013 to 2019 for relevant domestic and foreign literatures, including:(1) clinical application and research literature of local antibiotics;(2) experimental study on sustained release system(DDS) for the treatment of bone infection;(3) clinical and experimental literature on biological scaffold materials in large bone defects;(4) application and progress of bone tissue engineering in the repair of infectious bone defects;(5) literature on 3 D printing technology. A total of 60 literature analyses and summaries were included.RESULTS AND CONCLUSION:(1) The local use of antibiotics at bone infection site was effective.(2) Bone tissue engineering had a great development prospect and potential in inducing bone regeneration to repair bone defects, which also pointed out a new way for orthopedic surgeons to treat infectious bone defects in the future, and gave new hope to patients and their families. The breakthrough and challenge of this technology is to explore the most suitable high-quality cells.(3) To explore the perfect combination of bone tissue engineering technology,antimicrobial agents and absorbable biomaterials for the treatment of infectious bone defects with new technologies is a new development direction of the orthopedic clinical treatment for infectious bone defect in the future.
引文
[1] Bakhshalian N, Jalayer T, Shahoon H, et al. Osteopromotive property of allogenic demineralized dentin matrix:a pilot study. J West Soc Periodontol Periodontal Abstr. 2013;61(2):35-38.
    [2]缪志锐,陈进昌,陈陆平.万古霉素与自体微小颗粒骨植骨疗法对患者感染性骨缺损的临床疗效评价[J].抗感染药学,2018,15(5):781-783.
    [3]田青,刘勇,李国庆,等.自体骨复合抗生素一期植骨治疗感染性骨折不愈合[J].临床骨科杂志,2014,17(1):35-37.
    [4]张超,李文波,孙英杰,等.感染性骨缺损的手术治疗现状[J].中国骨与关节损伤杂志,2017,32(10):1116-1118.
    [5]祝芳芳,张杰,迟艳侠,等.复合载药CNTs磷酸钙骨水泥的制备及性能研究[J].黑龙江医药科学,2017,40(1):3-5..
    [6]李刚,杨皓然,杨炎彬.万古霉素复合型骨水泥治疗感染性骨缺损的临床疗效[J].实用中西医结合临床,2018,18(6):84-85.
    [7] Napora JK, Weinberg DS, Eagle BA, et al. Hexapod frame stacked transport for tibial infected nonunions with bone loss:, analysis of use of adjunctive stability. J Orthop Trauma. 2017;31(7):393.
    [8]王兴义.Ilizarov技术一期短缩延长术治疗感染性大段骨缺损[J].中国矫形外科杂志,2015,23(3):229-234.
    [9] Bisaccia M, Rinonapoli G, Meccariello L, et al. The challenges of monoaxial bone transport in orthopedics and traumatology. Ortopedia Traumatologia Rehabilitacja. 2017;19(4):373-378.
    [10]杨礼丹,邹刚,何文斌,等.Masquelet技术与Ilizarov技术治疗成人下肢长骨感染性骨缺损临床疗效分析[J].河北医学, 2018,24(6):918-922.
    [11]许永秋,王文权,卢庆弘,等.Ilizarov骨搬移技术治疗胫骨感染性骨不连的临床疗效[J].广西医学,2018,40(14):1614-1615.
    [12]喻胜鹏,傅景曙,李伟,等.Masquelet技术治疗长骨骨髓炎骨缺损的临床分析[J].第三军医大学学报,2014,36(15):1630-1634.
    [13] Akgun U, Canbek U, Aydogan NH. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017;48(7):1616-1622.
    [14] Saxer F, Eckardt H. Reconstruction of osseous defects using the Masquelet technique. Der Orthop?de. 2017;46(8):1-8.
    [15] Li L, Zhou G, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials.2015;37:218-229.
    [16] Wang X, Wei F, Luo F, et al. Induction of granulation tissue for the secretion of growth factors and the promotion of bone defect repair. J Orthop Surg Res. 2015;10(1):147.
    [17]袁冰,韦卓.骨缺损修复的研究进展[J].生物骨科材料与临床研究,2014,11(3):38-41.
    [18]王步祥,杨铁翼,赵振群,等.组织工程技术在感染性骨缺损治疗中的应用及优势[J].中国组织工程研究, 2017,21(28):4543-4549.
    [19] Celik H, Schibler M, SuvàD, et al. Where are we in the treatment of chronic osteomyelitis? Revue Médicale Suisse. 2013; 9(383):885-889.
    [20]徐永清,朱跃良,范新宇,等.万古霉素硫酸钙或万古霉素骨水泥治疗胫骨开放性骨折术后并发骨髓炎[J].中华创伤骨科杂志, 2014, 16(11):925-929.
    [21]赵宝成,袁天祥,马宝通,等.局部应用抗生素缓释系统治疗创伤后及内固定相关骨感染临床疗效观察[J].中国矫形外科杂志, 2015,23(10):877-881.
    [22] Lalidou F, Kolios G, Drosos GI. Bone infections and bone graft substitutes for local antibiotic therapy. Surg Tech Int. 2014; 24(XXIV):353-362.
    [23]陈明,董启榕. Wnt与转化生长因子-β信号在成骨细胞分化中的相互作用[J].中华实验外科杂志, 2016, 33(3):864-868.
    [24]李俊峰,郭庆山,傅捷辉. Wnt/β-catenin信号通路在调控骨量的作用[J].重庆医学, 2017, 46(3):401-403.
    [25]徐伟丽,牛玲玲,王文侠,等.经典Wnt信号通路对骨代谢的调节作用[J].中国骨质疏松杂志, 2016, 22(3):376-380.
    [26] Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions-a 21st century perspective. Bone Res.2013;1(3):216-248.
    [27]王桐月,李武伟,马国武.骨髓间充质干细胞在颌骨缺损修复组织工程中的应用[J].口腔医学研究, 2015,31(2):198-200.
    [28] Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine:classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18.
    [29] Perez JR, Kouroupis D, Li DJ, et al. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol.2018;6:105.
    [30]刘相杰,宋科官.生物支架材料及间充质干细胞在骨组织工程中的研究与应用[J].中国组织工程研究,2018,22(10):1618-1624.
    [31] He X, Dziak R, Yuan X, et al. BMP2 genetically engineered mscs and epcs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. Plos One. 2013;8(4):e60473.
    [32] Sheikh Z, Javaid MA, Hamdan N, et al. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers. Materials.2015;8(4):1778.
    [33] Kowalczewski CJ, Saul JM. Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol. 2018;9:513.
    [34] Dzobo K, Thomford NE, Senthebane DA, et al. Advances in regenerative medicine and tissue engineering:innovation and transformation of medicine. Stem Cells Int. 2018;2018:2495848.
    [35]王俊钢,李聪聪,毛广显,等.骨生物材料复合骨髓间充质干细胞异位成骨修复肋骨大段缺损[J].中国组织工程研究, 2017, 21(2):182-186.
    [36] Lorzadeh N, Kazemirad N. Embryonic stem cells and infertility. Am J Perinatol. 2018; 35(10):925-930.
    [37] Mizuno H. Ethical issues for clinical studies that use human embryonic stem cells:the 2014 revisions to the japanese guidelines. Stem Cell Rev.2015; 11(5):676-680.
    [38]夏荃,鲍倩,蒋德菊,等.BMP-Smad信号通路在小鼠胚胎干细胞诱导分化成骨细胞方案优化中的应用[J].广东医学, 2018,39(6):822-827.
    [39] Chen X, Han T, Fisher JE, et al. Transcriptomics analysis of early embryonic stem cell differentiation under osteoblast culture conditions:Applications for detection of developmental toxicity. Reprod Toxicol.2017;69:75-83.
    [40]杨超.诱导多能干细胞治疗颈节段脊髓损伤的研究进展[J].安徽医科大学学报,2018,53(2):323-326.
    [41]张萍,马月辉,焦淑清,等.诱导性多能干细胞研究及临床应用[J].动物医学进展, 2015,36(8):101-105.
    [42] Liu Y, Fox V, Lei Y, et al. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation. J Biomed Mater Res B Appl Biomater. 2014;102(5):1101-1112.
    [43]杨孟恺,易诚青.诱导多能干细胞在骨再生中的应用[J].中国医刊, 2017,52(6):20-23.
    [44] Ardeshirylajimi A, Dinarvand P, Seyedjafari E, et al. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res. 2013;354(3):849-860.
    [45] Tang M, Chen W, Liu J, et al. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng Part A. 2014;20(7-8):1295-1305.
    [46] Jin GZ, Kim TH, Kim JH, et al. Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold.J Biomed Mater Res A. 2013; 101A(5):1283-1291.
    [47] Goncalves EM, Oliveira FJ, Silva RF, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res A. 2016;104(6):1210-1219.
    [48] Dalgic AD, Alshemary AZ, Tezcaner A, et al. Silicate-doped nanohydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl. 2018;32(10):1392-1405.
    [49] Andrés NC, Sieben JM, Baldini M, et al. Electroactive Mg2+-hydroxyapatite nanostructured networks against drug-resistance bone infection strains. ACS Appl Mat Interfaces. 2018:acsami.8b06055.
    [50] Li L, Zhou G, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials.2015; 37:218-229.
    [51] Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes:a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819.
    [52] Jahan K, Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects. Biomater Sci. 2015;4(1):10.1039.C5BM00163C.
    [53] Bose S, Fielding G, Tarafder S, et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics.Trends Biotechnol. 2013; 31(10):594-605.
    [54] Lei Y, Xu Z, Ke Q, et al. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.Mat Sci Eng. 2017;72:134-142.
    [55] Studart AR. Additive manufacturing of biologically-inspired materials.Chem Soc Rev. 2016;45(2):359-376.
    [56] Luo Y, Zhai D, Huan Z, et al. Three-dimensional printing of hollowstruts-packedbioceramic scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7(43):24377-2483.
    [57] Kao CT, Lin CC, Chen YW, et al. Poly(dopamine)coating of 3D printed poly(lactic acid)scaffolds for bone tissue engineering. Mat Sci Eng.2015;56:165-173.
    [58] Zhang Y, Xia L, Zhai D, et al. Mesoporous bioactive glass nanolayer-f unctionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale. 2015; 7(45):10.1039.C5NR05421D.
    [59] Adel-Khattab D, Giacomini F, Gildenhaar R, et al. Development of a synthetic tissue engineered 3D printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro. Key Eng Mat. 2016;720:82-89.
    [60] Cavo M, Scaglione S. Scaffold microstructure effects on functional and mechanical performance:Integration of theoretical and experimental approaches for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2016;68:872-879.