咪唑离子液体+1,2-丙二醇/1-丙醇二元体系在多温下的物理化学性质和超额性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physicochemical and excess properties of binary mixtures of(1-alkyl-3-methylimidazolium bromide+1,2-propanediol/1-propanol)at T=(288.15 to 333.15) K
  • 作者:李淑妮 ; 翟全国 ; 蒋育澄 ; 胡满 ; 高胜利
  • 英文作者:Shuni Li;Quanguo Zhai;Yucheng Jiang;Mancheng Hu;Shengli Gao;Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University;College of Chemistry and Materials Science, Northwest University;
  • 关键词:密度 ; 折光率 ; 黏度 ; 咪唑离子液体 ; 1 ; 2-丙二醇 ; 1-丙醇
  • 英文关键词:density;;refractive index;;viscosity;;imidazolium-based ionic liquid;;1,2-propanediol;;1-propanol
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:陕西省大分子科学重点实验室陕西师范大学化学化工学院;西北大学化学与材料科学学院;
  • 出版日期:2018-12-27 09:16
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:21571120)资助项目
  • 语种:中文;
  • 页:JBXK201907010
  • 页数:5
  • CN:07
  • ISSN:11-5838/O6
  • 分类号:86-90
摘要
本文测定了温度288.15~333.15 K和常压下溴化1-己基/辛基-3-甲基咪唑离子液体([C_6mim]Br/[C_8mim]Br)+1,2-丙二醇/1-丙醇二元体系的密度(ρ)、折光率(nD)和黏度(η),计算获得了超额摩尔体积(V_m~E)和折光率偏差(Δn_D),并用Redlich-Kister方程对衍生性质数据进行拟合.密度、折光率和黏度值随组成的变化用多项式方程进行了拟合,讨论了醇、离子液体以及温度对二元体系物化性质的影响.
        In the present work, the density, ρ, refractive index, nD, and dynamic viscosity, η, for four binary solutions containing ionic liquids [C_nmim]Br(C_nmim=1-alkyl-3-methylimidazolium, n=6, 8) and 1,2-propanediol(PG)/1-propanol(NPA), at temperatures 288.15–333.15 K and ambient pressure were investigated. Additionally, the excess molar volume, V_m~E, and the refractive index deviations, Δn_D, were calculated and correlated using the Redlich-Kister polynomial equation. The density, refractive index, and natural logarithm of dynamic viscosity of the binary mixtures were correlated using empirical equation. The influence of alcohol, ionic liquids, and temperature on the physicochemical properties was discussed.
引文
1 Plechkova NV,Seddon KR.Chem Soc Rev,2008,37:123-150
    2 McEwen AB,Mcdevitt SF,Koch VR.J Electrochem Soc,1997,144:L84-L86
    3 Ruiz V,Huynh T,Sivakkumar SR,Pandolfo AG.RSC Adv,2012,2:5591-5598
    4 Cooper ER,Andrews CD,Wheatley PS,Webb PB,Wormald P,Morris RE.Nature,2004,430:1012-1016
    5 Alkhaldi KHAE,Al-Jimaz AS,AlTuwaim MS.J Chem Thermodyn,2017,110:175-185
    6 Wandschneider A,Lehmann JK,Heintz A.J Chem Eng Data,2016,53:596-599
    7 Patel H,Vaid ZS,More UU,Ijardar SP,Malek NI.J Chem Thermodyn,2016,99:40-53
    8 Papovi?S,Be?ter-Roga?M,Vrane?M,Gad?uri?S.J Chem Thermodyn,2016,99:1-10
    9 Paduszyński K,Lukoshko EV,Królikowski M,Domańska U,Szyd?owski J.J Phys Chem B,2015,119:543-551
    10 Govinda V,Vasantha T,Khan I,Venkatesu P.Ind Eng Chem Res,2015,54:9013-9026
    11 García-Miaja G,Troncoso J,RomaníL.Fluid Phase Equilib,2008,274:59-67
    12 Crosthwaite JM,Muldoon MJ,Dixon JNK,Anderson JL,Brennecke JF.J Chem Thermodyn,2005,37:559-568
    13 Yan JH,Dai LY,Wang XZ,Chen YQ.J Chem Eng Data,2009,54:1147-1152
    14 Romero CM,Páez MS,Pérez D.J Chem Thermodyn,2008,40:1645-1653
    15 Patel H,Vaid ZS,More UU,Ijardar SP,Malek NI.J Chem Thermodyn,2016,99:40-53
    16 Sastry NV,Vaghela NM,Macwan PM.J Mol Liquids,2013,180:12-18
    17 Domańska U,Papis P,Szyd?owski J,Królikowska M,Królikowski M.J Phys Chem B,2014,118:12692-12705
    18 Li JG,Hu YF,Sun SF,Liu YS,Liu ZC.J Chem Thermodyn,2010,42:904-908
    19 Pal A,Kumar B.Fluid Phase Equilib,2012,334:157-165
    20 Yang Q,Zhang H,Su B,Yang Y,Ren Q,Xing H.J Chem Eng Data,2010,55:1750-1754
    21 Bahadur I,Naidoo P,Singh S,Ramjugernath D,Deenadayalu N.J Chem Thermodyn,2014,78:7-15
    22 Nikam PS,Kharat SJ.J Chem Eng Data,2005,50:455-459
    23 Pi?eiroá,Brocos P,Amigo A,Pintos M,Bravo R.Phys Chem Liquids,2000,38:251-260
    24 Redlich O,Kister AT.Ind Eng Chem,1948,40:345-348
    25 Baji?DM,Ivani?GR,Visak ZP,?ivkovi?EM,?erbanovi?SP,Kijev?anin ML.J Chem Thermodyn,2013,57:510-529