基于缺陷重构的类芬顿光催化剂在降解染料废水中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Fenton-like Photocatalysts Based on Defect Reconstruction in Degradation of Dye Wastewater
  • 作者:唐清文 ; 安晓强 ; 兰华春 ; 刘会娟 ; 李海翔
  • 英文作者:TANG Qing-wen;AN Xiao-qiang;LAN Hua-chun;LIU Hui-juan;LI Hai-xiang;School of Environmental Science and Engineering,Guilin University of Technology;Center for Water and Ecology,School of Environment,Tsinghua University;
  • 关键词:光催化 ; 二氧化钛 ; 类芬顿反应 ; 缺陷重构 ; 磷钨酸铁
  • 英文关键词:photocatalytic reaction;;titanium dioxide;;Fenton-like catalysis;;defect rearrangement;;iron phosphotungstate
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:桂林理工大学环境科学与工程学院;清华大学环境学院水质与水生态研究中心;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家优秀青年科学基金项目(51722811)
  • 语种:中文;
  • 页:HJKZ201907021
  • 页数:8
  • CN:07
  • ISSN:11-1895/X
  • 分类号:188-195
摘要
近年来,通过缺陷调控提高催化剂催化性能引起了广泛关注,而缺陷重构过程对光催化-类芬顿耦合反应的影响仍鲜有研究.本文将含铁多酸分子强耦合到富含氧空位缺陷的二氧化钛(TiO_2)光催化剂(P25)表面,考察了缺陷形成和二次重构过程对光催化-类芬顿协同催化降解有机染料活性的影响.结果表明,单氰胺复合后二次煅烧有利于H2气氛处理生成的氧空位进行空间分布重构,重构后的缺陷更为有利于TiO_2表面的光生电荷向含铁多酸分子界面转移.借助TiO_2光催化剂光生电荷分离能力的提升和类芬顿试剂活性位点的增强,缺陷重构的类芬顿光催化剂在降解亚甲基蓝染料的反应中催化活性提高了13倍.
        In recent years,improving the performance of catalysts through defect modulation has attracted extensive attention.However,the impact of defect rearrangement on Fenton-like photocatalytic reactions has not been studied. In this study,Fe-containing polyoxometalate molecules were grafted onto the surface of defective TiO_2. The influence of oxygen vacancy formation and the defect arrangement process on the catalytic activity was investigated. The results indicated that the calcination of cyanamide modified defective TiO_2 is beneficial for the spatial reconstruction of oxygen vacancies generated by H2 atmosphere treatment. With rearranged structural defects,photo-generated electrons were prone to transfer from the surface of P25 to Fe-POM nanoparticles. Due to the enhanced charge separation in TiO_2 and the increased reactive sites on the Fenton-like reagent,Fenton-like photocatalysts with rearranged defects showed a 13-fold increase in catalytic activity during the degradation of dye molecules.
引文
[1]徐琪,周泽宇,王洪涛.石墨烯-Ti O2光催化剂复合板制备及其对五氯酚的催化降解[J].环境科学,2016,37(8):3079-3085.Xu Q,Zhou Z Y,Wang H T. Generation of graphene-titanium dioxide nanotubes catalytic board and its photocatalysis capability to degrade pentachlorophenol[J]. Environmental Science,2016,37(8):3079-3085.
    [2]许文泽,杨春风,李静,等.二氧化钛光催化氧化阿散酸[J].环境科学,2016,37(1):193-197.Xu W Z,Yang C F,Li J,et al. Photocatalytic oxidation of parsanilic acid by Ti O2[J]. Environmental Science,2016,37(1):193-197.
    [3] Du Y C,Liu W W,Qiang R,et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J].ACS Applied Materials&Interfaces,2014,6(15):12997-13006.
    [4] Wang N,Du Y C,Ma W J,et al. Rational design and synthesis of SnO2-encapsulatedα-Fe2O3nanocubes as a robust and stable photo-Fenton catalyst[J]. Applied Catalysis B:Environmental,2017,210:23-33.
    [5] Doumic L I,Soares P A,Ayude M A,et al. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater[J].Chemical Engineering Journal,2015,277:86-96.
    [6] Ortega-Liébana M C,Sánchez-López E,Hidalgo-Carrillo J,et al. A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous(photoFenton)and heterogeneous(Ti O2)photocatalysis[J]. Applied Catalysis B:Environmental,2012,127:316-322.
    [7]汪快兵,方迪,徐峙晖,等.生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究[J].环境科学,2015,36(3):995-999.Wang K B,Fang D,Xu Z H,et al. Biosynthetic schwertmannite as catalyst in Fenton-like reactions for degradation of methyl orange[J]. Environmental Science,2015,36(3):995-999.
    [8] Lee K T,Chuah X F,Cheng Y C,et al. Pt coupled ZnFe2O4nanocrystals as a breakthrough photocatalyst for Fenton-like processes-photodegradation treatments from hours to seconds[J].Journal of Materials Chemistry A,2015,3(36):18578-18585.
    [9] Luo W,Zhu L H,Wang N,et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science&Technology,2010,44(5):1786-1791.
    [10] Yoon M, Oh Y, Hong S, et al. Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3nanohybrids mediated by photo-Fenton reaction and H2O2[J].Applied Catalysis B:Environmental,2017,206:263-270.
    [11] An X Q, Wu S Q, Tang Q W, et al. Strongly coupled polyoxometalates/oxygen doped g-C3N4nanocomposites as Fenton-like catalysts for efficient photodegradation of sulfosalicylic acid[J]. Catalysis Communications,2018,112:63-67.
    [12] An X Q,Zhang L,Wen B,et al. Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies[J]. Nano Energy,2017,35:290-298.
    [13] Jin H,Tian X K,Nie Y L,et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3. 2-9. 0by Cu substituted magnetic Fe3O4@Fe OOH nanocomposite[J].Environmental Science&Technology,2017,51(21):12699-12706.
    [14] Wei T C, Zhu Y N,Gu Z A,et al. Multi-electric field modulation for photocatalytic oxygen evolution:Enhanced charge separation by coupling oxygen vacancies with faceted heterostructures[J]. Nano Energy,2018,51:764-773.
    [15] An X Q,Hu C Z,Lan H C,et al. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for highefficiency photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2017,5(47):24989-24994.
    [16] Zhang H,Cai J M,Wang Y T,et al. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over Ti O2with exposed{001}facets[J]. Applied Catalysis B:Environmental,2018,220:126-136.
    [17] Yuan W T,Wang Y,Li H B,et al. Real-time observation of reconstruction dynamics on Ti O2(001)surface under oxygen via an environmental transmission electron microscope[J]. Nano Letters,2016,16(1):132-137.
    [18] Chen X B,Liu L,Yu P Y,et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science,2011,331(6018):746-750.
    [19] LüX J,Chen A P,Luo Y K,et al. Conducting interface in oxide homojunction:Understanding of superior properties in black Ti O2[J]. Nano Letters,2016,16(9):5751-5755.
    [20] Liu J H, Xie S Y, Geng Z B, et al. Carbon nitride supramolecular hybrid material enabled high-efficiency photocatalytic water treatments[J]. Nano Letters,2016,16(10):6568-6575.
    [21] Li J L,Zhang M,Guan Z J,et al. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of Ti O2in the photocatalytic reduction of CO2[J]. Applied Catalysis B:Environmental,2017,206:300-307.
    [22] Su T,Yang Y L,Na Y,et al. An insight into the role of oxygen vacancy in hydrogenated Ti O2nanocrystals in the performance of dye-sensitized solar cells[J]. ACS Applied Materials&Interfaces,2015,7(6):3754-3763.
    [23] Das T K,Ilaiyaraja P,Sudakar C. Template assisted nanoporous Ti O2nanoparticles:The effect of oxygen vacancy defects on photovoltaic performance of DSSC and QDSSC[J]. Solar Energy,2018,159:920-929.
    [24] Coronado J M,Maira A J,Conesa J C,et al. EPR study of the surface characteristics of nanostructured Ti O2under UV irradiation[J]. Langmuir,2001,17(17):5368-5374.
    [25] Xiong L B,Li J L,Yang B,et al. Ti3+in the surface of titanium dioxide:Generation, properties and photocatalytic application[J]. Journal of Nanomaterials,2012,2012:831524.
    [26] Zhao Y F,Chen G B,Bian T,et al. Defect-rich ultrathin ZnAllayered double hydroxide nanosheets for efficient photoreduction of CO2to CO with water[J]. Advanced Materials,2015,27(47):7824-7831.
    [27] Fang G D, Deng Y M, Huang M, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science&Technology,2018,52(4):2178-2185.
    [28] Lian Z C,Wang W C,Li G S,et al. Pt-enhanced mesoporous Ti3+/Ti O2with rapid bulk to surface electron transfer for Photocatalytic hydrogen evolution[J]. ACS Applied Materials&Interfaces,2017,9(20):16959-16966.
    [29]王阿楠,滕应,骆永明.二氧化钛(P25)光催化降解二苯砷酸的研究[J].环境科学,2014,35(10):3800-3806.Wang A N,Teng Y,Luo Y M. Photo-catalytical degradation of diphenylarsinic acid by Ti O2(P25)[J]. Environmental Science,2014,35(10):3800-3806.
    [30] Gesenhues U. Al-doped Ti O2pigments:Influence of doping on the photocatalytic degradation of alkyd resins[J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,139(2-3):243-251.
    [31] Kong X C, Xu Y M, Cui Z D, et al. Defect enhances photocatalytic activity of ultrathin Ti O2(B)nanosheets for hydrogen production by plasma engraving method[J]. Applied Catalysis B:Environmental,2018,230:11-17.
    [32] Wang Y B,Zhao X,Cao D,et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4hybrid[J]. Applied Catalysis B:Environmental,2017,211:79-88.
    [33] Xia L G,Bai J,Li J H,et al. High-efficient energy recovery from organics degradation for neutral wastewater treatment based on radicals catalytic reaction of Fe2+/Fe3+-EDTA complexes[J]. Chemosphere,2018,201:59-65.