乙烯气相聚合流化床反应器内Geldart B类和Geldart D类颗粒流动特性的三维数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D numerical simulation of flow characteristics for Geldart B and Geldart D particles in gas phase ethylene polymerization fluidized-bed reactor
  • 作者:车煜 ; 田洲 ; 张瑞 ; 高宇新 ; 邹恩广 ; 王斯晗 ; 刘柏平
  • 英文作者:CHE Yu;TIAN Zhou;ZHANG Rui;GAO Yuxin;ZOU Enguang;WANG Sihan;LIU Boping;State Key Laboratory of Chemical Engineering,East China University of Science and Technology;Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,East China University of Science and Technology;Daqing Petrochemical Research Center,Petrochemical Research Institute of Petro China;
  • 关键词:流化床 ; 聚乙烯 ; 计算流体力学 ; Geldart ; D类颗粒 ; 免造粒工艺 ; 粒度分布
  • 英文关键词:fluidized-bed;;polyethylene;;CFD;;Geldart D particles;;non-pelletizing PE production process;;particle size distribution
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:华东理工大学化学工程联合国家重点实验室;华东理工大学化工过程先进控制与优化技术教育部重点实验室;中国石油石油化工研究院大庆化工研究中心;
  • 出版日期:2016-02-15
  • 出版单位:化工学报
  • 年:2016
  • 期:v.67
  • 基金:国家重点基础研究发展计划项目(2012CB720502);; 国家自然科学基金项目(21406061);; 上海市自然科学基金项目(14ZR1410600);; 引智计划项目(B08021);; 中央高校基本科研业务费专项资金项目~~
  • 语种:中文;
  • 页:HGSZ201602018
  • 页数:11
  • CN:02
  • ISSN:11-1946/TQ
  • 分类号:153-163
摘要
乙烯气相聚合流化床反应器的设计、操作和优化依赖于对聚合物颗粒粒径大小和分布、气泡运动特性及聚合反应状况的准确描述。采用Eulerian-Eulerian双流体模型和群体平衡模型耦合方法对某乙烯气相聚合中试规模的工业流化床反应器分别处于常规聚合工艺(属Geldart B类颗粒)和免造粒工艺(属Geldart D类颗粒)时床体的气固流动特征以及不同颗粒类型对反应器操作状态和颗粒运动特性的影响进行了三维数值模拟研究。与传统聚乙烯生产工艺相比,免造粒工艺时的Geldart D类聚合物颗粒更易聚集于气体入口处区域,而且会产生明显的旋涡并出现较大的气泡。研究结果可为免造粒聚乙烯生产工艺的工业推广应用提供参考。
        The status of polyethylene(PE) particle size and distribution, bubble generation and movement, and polymerization reaction in gas phase ethylene polymerization fluidized-bed reactor(FBR) is significant for PE production process, reactor design, optimization and control. Based on 3 dimensional(3D) Eulerian-Eulerian two-fluid model combined with a population balance model(PBM), this work aims to explore the two-phase flow characteristics and the effects of traditional PE production process(Geldart B particles) and non-pelletizing PE production process(Geldart D particles) on the operating behaviors in a pilot-plant FBR. The simulation results match well with the industrial measured pressure drop and temperature data. It is also found that the polymer particles observably concentrated on the bed inlet region for the effects of Geldart D particles and superfical gas velocity. In addition, the obvious vortexes and large bubbles can be clearly observed in the bed height direction. The results could provide foundation for the extension and application of the non-pelletizing PE production process.
引文
[1]张丽霞.Unipol气相法聚乙烯工艺技术进展[J].合成树脂及塑料,2013,30(4):70-74.ZHANG L X.Progress in Unipol gas-phase polyethylene process technology[J].China Synthetic Resin and Plastics,2013,30(4):70-74.
    [2]XIE T Y,MCAULEY K B,HSU J C,et al.Gas phase ethylene polymerization:production processes,polymer properties,and reactor modeling[J].Industrial&Engineering Chemistry Research,1994,33(3):449-479.
    [3]CHE Y,TIAN Z,LIU Z,et al.CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process[J].Powder Technology,2015,278:94-110.
    [4]KHAN M J H,HUSSAIN M A,MANSOURPOUR Z,et al.CFD simulation of fluidized bed reactors for polyolefin production—a review[J].Journal of Industrial and Engineering Chemistry,2014,20(6):3919-3946.
    [5]TERANO M,SUEHIRO K,SAGAE T,et al.Studies in Surface Science and Catalysis[M].Amsterdam:Elsevier,2006:7-12.
    [6]WU L,WANKE S E.Handbook of Transition Metal Polymerization Catalysts[M].New Jersey:John Wiley&Sons Inc.,2010:231-259.
    [7]TIAN Z,GU X P,FENG L F,et al.An atmosphere-switching polymerization process:a novel strategy to advanced polyolefin materials[J].AICh E Journal,2013,59(12):4468-4473.
    [8]GALLI P,VECELLIO G.Technology:driving force behind innovation and growth of polyolefins[J].Progress in Polymer Science,2001,26(8):1287-1336.
    [9]GELDART D.Types of gas fluidization[J].Powder Technology,1973,7(5):285-292.
    [10]FAN L S,ZHU C.Principles of Gas-Solid Flows[M].Cambridge:Cambridge University Press,2005:371-420.
    [11]李倩,程景才,杨超,等.群体平衡方程在搅拌反应器模拟中的应用[J].化工学报,2014,65(5):1607-1615.LI Q,CHENG J C,YANG C,et al.Application of population balance equation in numerical simulation of multiphase stirred tanks[J].CIESC Journal,2014,65(5):1607-1615.
    [12]MARCHISIO D L,FOX R O.Computational Models for Polydisperse Particulate and Multiphase Systems[M].Cambridge:Cambridge University Press,2013:47-101.
    [13]YAN W C,LUO Z H,LU Y H,et al.A CFD-PBM-PMLM integrated model for the gas-solid flow fields in fluidized bed polymerization reactors[J].AICh E Journal,2012,58(6):1717-1732.
    [14]MCGRAW R.Description of aerosol dynamics by the quadrature method of moments[J].Aerosol Science and Technology,1997,27(2):255-265.
    [15]CHEN X Z,LUO Z H,YAN W C,et al.Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors[J].AICh E Journal,2011,57(12):3351-3366.
    [16]HATZANTONIS H,GOULAS A,KIPARISSIDES C.A comprehensive model for the prediction of particle-size distribution in catalyzed olefin polymerization fluidized-bed reactors[J].Chemical Engineering Science,1998,53(18):3251-3267.
    [17]CHE Y,TIAN Z,LIU Z,et al.A CFD-PBM model considering ethylene polymerization for the flow behaviors and particle size distribution of polyethylene in a pilot-plant fluidized bed reactor[J].Powder Technology,2015,286:107-123.
    [18]SUN J Y,WANG J D,YANG Y R.CFD investigation of particle fluctuation characteristics of bidisperse mixture in a gas-solid fluidized bed[J].Chemical Engineering Science,2012,82:285-298.
    [19]YAN W C,LI J,LUO Z H.A CFD-PBM coupled model with polymerization kinetics for multizone circulating polymerization reactors[J].Powder Technology,2012,231:77-87.
    [20]KANELLOPOULOS V,DOMPAZIS G,GUSTAFSSON B,et al.Comprehensive analysis of single-particle growth in heterogeneous olefin polymerization:the random-pore polymeric flow model[J].Industrial&Engineering Chemistry Research,2004,43(17):5166-5180.
    [21]FAN Rong.Computational fluid dynamics simulation of fluidized bed polymerization reactors[D].Iowa:Iowa State University,2006.
    [22]WEI L H,YAN W C,LUO Z H.A preliminary CFD study of the gas-solid flow fields in multizone circulating polymerization reactors[J].Powder Technology,2011,214(1):143-154.
    [23]LOHA C,CHATTOPADHYAY H,CHATTERJEE P K.Assessment of drag models in simulating bubbling fluidized bed hydrodynamics[J].Chemical Engineering Science,2012,75:400-407.
    [24]HAN Y,WANG J J,GU X P,et al.Homogeneous fluidization of Geldart D particles in a gas-solid fluidized bed with a frame impeller[J].Industrial&Engineering Chemistry Research,2012,51(50):16482-16487.
    [25]张翠宣,叶京生,宋继田.喷动床研究与进展[J].化工进展,2002,21(9):630-634.ZHANG C X,YE J S,SONG J T.Development and prospect of modified spouted beds[J].Chemical Industry and Engineering Progress,2002,21(9):630-634.