番茄红素β-环化酶基因的沉默
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转录后基因沉默(post-transcriptional gene silencing,PTGS)是一种序列特异性的RNA降解过程,主要作用于同源性较高的转录产物,也称为RNA沉默(RNAsilencing)。PTGS只会特异性地降解同源性mRNA不会影响其他基因的表达,是生物体在基因调控水平上的一种自我保护机制。对基因沉默进行深入研究,可进一步揭示生物体基因遗传表达调控的本质,在基因工程中克服基因沉默现象,使外源基因能更好地按照人们的需要进行有效表达。植物PTGS的稳定表达为研究植物基因表达调控及鉴定基因功能及作物改良提供了新的途径。
     番茄红素β-环化酶(Lyc—b)是类胡萝卜素代谢途径中催化番茄红素转变成为β-胡萝卜素的关键酶,它决定β-胡萝卜素的生成量,也决定了生成维生素A的量。利用RT-PCR技术从番茄叶片中克隆出Lyc-b基因,将PCR产物与pGEM-T载体连接。并以它为模板,PCR获得了约350bp左右的目的片段,将目的片段直接插入到基因沉默载体pJawoh18中,构建出高效沉默的ihpRNA结构载体pJawoh18-2b。在沉默载体中选bar基因作为选择标记基因,使转基因再生植株能抗除草剂Basta,可广泛适用于大田。将PCR和酶切鉴定为阳性的克隆转化农杆菌LBA1100,利用根癌农杆菌Ti质粒介导的叶盘转化法转化番茄获得了抗性愈伤及17株再生苗,其中PCR、RT-PCR检测结果都为阳性的植株有4棵。通过PCR、RT-PCR检测证明了pJawoh18-2b沉默载体中沉默Lyc-b的ihpRNA结构目的片段已成功的插入了番茄基因组中。番茄转化阳性植株对200 mg/L浓度的Basta有明显抗性。番茄转化阳性植株的果实成熟过程中,在黄色背景下逐渐出现红色斑纹,表明果实中番茄红素β—环化酶基因可能被沉默,使上游番茄红素在果实中积累。本实验为培育出果实中高番茄红素含量的优良番茄品种,并进一步了解番茄红素β-环化酶(Lyc—b)基因的功能,以及Lyc—b在类胡萝卜素代谢过程中的重要作用奠定了基础。
Post-transcriptional gene silencing (PTGS) is a nucleotide sequence-specific process of RNA degradation. It leads to the degradation of homologous RNA from among endogenous genes, transgenes or RNA virus. RNA silencing represents an evolutionarily conserved defense mechanism that plays a key antiviral role in protecting plants against virus infection. Post-transcriptional gene silencing (PTGS) can be used to control the gene expression and study the gene function in transgenic plants.
     Lycopeneβ-Cyclase is a key enzyme in carotenoid biosythetic pathway and catalyzes the formation ofβ-carotene from lycoene. Tomato lycoeneβ-Cyclase gene was amplified by RT-PCR from tomato leaf mRNA and cloned in pGEM-T vector. A 350 bp lycoeneβ-Cyclase gene fragment was subcloned in pDon221 and pJawoh18 from pGEM-T-Lyc-b. After verification by PCR and restriction analysis, ihpRNA vector pJawohl8-2b containing lycoeneβ-Cyclase gene fragment was constructed successfully by Gateway technology and was transfered into tomato plants by Agtobacterium-mediated transformation. We constructed a efficient gene silencing vector to silence the Lycopeneβ-Cyclase Gene, then investigate the function of Lycopeneβ-Cyclase gene in caroteniod biosynthesis pathway. Transfected tomato got restriction callus and 17 regeneration plants, four of which are positive by PCR and RT-PCR detection. Positive plants are restrictive to 200 mg/L Basta. During ripening process, the fruits of the positive tomatoes become red gradually. That means Lycopeneβ-Cyclase gene may be silent. The bar gene was used as the selective marker gene in transgenic tomato. The transgenic tomato plants were produced in a herbicide tolerence system, so that the transgenic plants can be used in the fields.
引文
[1] Stam M, Mil j N M, Kooter J M. The silence of genes in transgenic plants[J]. Annals of Botany, 1997,79(1): 3-12.
    
    [2] Kooter J M, Matzke M A, Meyer P. Listening to the silent genes: transgene silencing, gene regulation and pathogen control[J]. Trends Plant sci, 1999,4: 340-347.
    
    [3] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous gene in trans [J]. Plant Cell, 1990, 2 (4): 279-289.
    
    [4] Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes [J].Antonie Van Leeuwenhoek, 1994, 65 (3): 205-209.
    
    [5] Guo S, Kemphues K J. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative ser/Thr kinase that is asymmetrically distributed [J]. Cell, 1995, 81 (4): 611-620.
    
    [6] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391 (6669): 806-811.
    
    [7] Palauqui J C, Vaucheret H. Transgene are dispensable for the RNA degradation step of cosuppression [J]. Prac Natl Acad Sci USA, 1998, 95 (16): 9675-9680.
    
    [8] Palauqui J C, Balzergue S. Activation of systemic silencing by localized introduction of DNA [J].Current Biology, 1999, 9 (22): 59-66.
    
    [9] Montgomery M K, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans[J]. Prac Natl Acad Sci USA, 1998, 95 (26): 15502-15507.
    
    [10] Sonoda S, Nishiguchi M. Graft transmission of post-transcriptional gene silencing: target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silence plants [J]. Plant J, 2000,21 (1): 1-8.
    
    [11] Chuang C, Meyeronits E M. Specific and hertable genetic interference by double-stranded RNA in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2000, 97 (9): 4985-4990.
    
    [12] Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double-stranded RNA [J]. Nature Rev Gen, 2001, 2 (2): 110-119.
    
    [13] Zamore P D, Tuschl T, Sharp P A, et al. 2000. RNAi: double-stranded RNA directs the ATP dependet cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 101 (1): 25-33.
    
    [14] Yule Liu, Michael Schiff and S.P. Dinesh-Kumqr. Virus-induced gene silencing in tomato[J]. The plant journal,2002,31(6): 777-786.
    
    [15] Guilinang Tang, Gad Galili[0]. Using RNAi to improve plant nutritional value: from mechanism to application[J]. Trends in biotechnology 2004, 22(9): 463-469.
    
    [16] Waterhouse P M, Graham M W, Wang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA [J]. Proc Natl Acad Sci USA, 1998, 95(23): 13959-13964.
    
    [17] Ngo H, Tschudi C, Gull K, et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei [J]. Proc Natl Acad Sci USA, 1998, 95 (25): 14687-14692.
    
    [18] Zamore P D, Tuschl T, Sharp P A, et al. 2000. RNAi: double-stranded RNA directs the ATP dependet cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 101 (1): 25-33.
    
    [19] Bosher J M, Labouesse M. RNA interference: genetic wand and gene watchdog [J]. Nature Cell Biology, 2000, 2(2): 31-36.
    
    [20] Tuschl T. RNA interference and small interfering RNAS [J]. Chembiochem, 2001, 2 (4): 239-245.
    [21] Zamore P D.Ancient pathways programmed by small RNAs[J].Science, 2002, 296(5571): 1265-1269.
    [22]Zamecnik PC,Stephenson ML.Inhibition of rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J].Proc Natl Acad Sci USA,1978,75:280-284.
    [23]Bird C R,Ray T A.Using antisense RNA to study gene function;inhibition of carotenoid biosynthesis in transgenic tomatoes[J].Biotechnology genet Eng Rev,1991,9:207.
    [24]Jeremy S Edwards,Kenneth J Kauffman.Antisense technology in molecular and cellular bioengineering[J].Current Opinion in Biotechnology,2003,14:505-511.
    [25]S.Varsha Wesley,et al.Construct design for efficient,effective and high-throughput gene silencing in plants[J].The Plant Journal,2001,27(6):581-590.
    [26]Peter A,Stoutjesdijk,Surinder P.singh,et al.hpRNA-Mediated Targeting of the Arabidopsis FAD2Gene Gives Highly Efficient and Stable Silencing[J].Plant physiology,2002,129:1723-1731.
    [27]Chris Helliwell,Peter Waterhouse.Constructs and methods for high-throughput gene silencing in plants[J].Methods,2003,30:289-295.
    [28]Liu Q et al.High-oleic and high-stearic cottonseed oils:nutritionally improved cooking oils developed using gene silencing[J].J Am.Coll Nutr,2002,21(3):205-211.
    [29]黄大年等.农作物抗除草剂工程研究进展[J].生物工程进展,1997,17(5):14-17.
    [30]De Block M,et al.Engineering herbicide resistance in plants by expression of a detoxifying enzyme[J].The EMBO Journal,1987(6):2513-2518.
    [31]Wang K,Herrerra-Estrella L,Van Montagu M,Zambryski P.Right 25-bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome.Cell,1984,38:455-462.
    [32]Horsch R,Fry J,Hoffrnan N,Eichholtz D,Rogers S,Fraley R.A simple and general method for transferring genes into plants[J].Science,1985,227:1229-1231.
    [33]Francis X.Cunningham,Barry Pogson,Zairen Sun etl.Analysis of the β and ε Lycopene Cyclase Enzymes of Arabidopsis Reveals a Mechanism for Control of Cyclic Carotenoid Formation[J].The Plant Cell,8:1613-1626.
    [34]Philippe Hugueney,Alfredo Badillo,Hsu-ching chen etl.Metabolism of cyclic carotenoids:a midel for the alteration of this biosynthetic pathway in capsicum annuum chromoplasts[J].The plant journal,1995,8(3):417-424.
    [35]Florence B,Alain D,Raloh A,et al.Identification of neoxanthin synthase as a carotenoid cyclase paralog[J].Eur.J biochem,2000,267:6346-6352.
    [36]Caterina D' Ambrosio,Giovanni Giorio,Ivana Marino etl.Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase(tlcy-b)cDNA[J].Plant science,2004,166:207-214.
    [37]T A Thorup,B Tanyolac,K D Livingstone,et al.Candidate gene analysis of organ pigmentation loci in the Solanaceae[J].PNPS,2000,97(21):11192-11197.
    [38]孟祥兵,王秀芳.基因沉默[J].生命的化学,2001,21(2):111-113.
    [39]Vaucheret H,Beclin C and Fagard M.Post-transcriptional gene silencing in plants[J].Journal of Cell Science,2001,114:3083-3091.
    [40]Guilinang Tang,Gad Galili i.Using RNAi to improve plant nutritional value:from mechanism to application[J].Trends in biotechnology,2004,22(9):463-469.
    [41]Humphrey J H,West Jr K P,Sommer AV.Vitamin A deficiency and attributable mortality amongst 5-year-olds[J].WHO Bulletin,1992,70:225-232.
    [42]Philippe Hugueney,Alfredo Badillo,Hsu-ching Chen etl.Metabolism of cyclic carotenoids:a rnidel for the alteration of this biosynthetic pathway in capsicum annuum chromoplasts[J].The plant journal, 1995,8(3):417-424.
    [43]Caterina D Ambrosio,Giovanni Giorio,Ivana Marino etl.Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase(LYC-b)cDNA[J].Plant science,2004,166:207-214.
    [44]Glenn E.Bartley,Pablo A.Scolnik.cDNA cloning,expression during development,and genome mapping of PSY2,a second tomato gene encoding phytoene synthase.J Biol Chem,1993,268(34):25718-21.
    [45]Giovanni Giuliano,Glenn E.Bartley,Pablo A.Scolnik.Regulation of Carotenoid Biosynthesis during Tomato Development[J].The Plant Cell,5:379-387.
    [46]Pecker I,Gabbay R,Cunningham F X,Hirschberg J.Cloning and characterization of the cDNA for lycopene bita-cyclase from tomato reveals decrease in its expression during fruit ripening.Plant Mol Biol,1996,30:807-819.
    [47]Gil Ronen,Merav Cohen,Dani Zamir and Joseph Hirschberg.Rrgulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta.The plant journal,1999,17(4):341-351.
    [48]McCormac AC,Wu H,Bao M,Wang Y,Xu R,Elliott MC,Chen DF.The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat(Triticum aestivam L.)and barley(Hordeum vulgare L.)[J].Euohytica,1998,99:17-25.
    [49]王关林,方宏筠.植物基因工程[M].北京:科学技术出版社(第二版),2002:297-330.
    [50]杨铃,宁正祥.番茄红素提取工艺研究进展[J].粮油食品科技,2004,12(5):44-45.
    [51]Handbook of Ni-NTA agarose.The QIAexpressionist.2003,6.
    [52]S.H.Park,B.M.Lee,M.G.Salas,M.Srivatanakul and R.H.Smith.Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation[J].Theor Appl Genet,2000,101:1015-1020.