南极阿德雷岛沉积物细菌多样性及环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极地区在研究全球变化中具有突出的地位,南极地区的各种环境因子对全球气候变化有敏感的反应,而且它是地球上唯一未被人类活动大量影响的地区,所以,南极地区的生态学研究有特殊的重要性。南极企鹅在某些地区是生态系统的主要影响因子,企鹅粪便沉积物记录了上千年企鹅数量和分布的变化规律,从而可以反映气候、环境变化和环境污染、人类活动等因子对生态系统的影响。对追溯南极大陆生态、气候与环境演变、探讨南极环境演变与全球变化的关系都具有重要的科学意义。
     本文作者于2001年11月至2002年4月参加了中国第18次南极考察队,合作采集了南极乔治王岛上阿德雷岛的企鹅粪便沉积物样品,分析了沉积物中可培养微生物,企鹅粪便沉积物中微生物数量比南极其他地区多,最多达到1×10~7个/g土样,并发现第7层次的可培养微生物数量突然降低;建立了提取南极沉积物的总DNA的方法,利用PCR-RFLP方法研究了沉积物中细菌的16S rDNA多样性,分析了沉积物中各类群细菌的数量和分布,发现沉积物中的细菌多样性较高,以CFB(Cytophaga-Flexibacter-Bacterioides)类群和β-、γ-Proteobacteria亚群的细菌为主,并且在第7层次处发现细菌的16S rDNA RFLP谱型数,基因型数和CFB类群细菌数量的异常,而β-Proteobacteria亚群和CFB类群细菌的数量呈反比关系;在沉积物中发现了大量的与降解有机污染物相关的细菌以及一株与重金属污染有关的细菌,在微生物生态方面找到了南极遭受有机物污染和重金属污染的证据;研究了沉积物各层次中各种氨基酸的种类与含量,发现沉积物中氨基酸种类和含量高于一般腐殖土,其中组氨酸、色氨酸、酪氨酸、甲硫氨酸和半胱氨酸在第2cm和第7cm处含量出现异常增多,其他氨基酸则在第2cm和第7cm处含量减少。基于以上的试验,我们分析了企鹅粪便沉积物中微生物生态与环境变化和环境污染的关系并提出了沉积物中出现的异常在环境和气候方面可能的解释,初步建立了以分析企鹅粪便沉积物中微生物多样性为手段的新的考察南极气候变迁和环境污染的思路。
     深海蕴藏着丰富的资源,其中深海生物资源是国内外研究的热点。深海生物经过长期的进化、选择,在各种极端的环境条件下形成了独特的组织结构、酶系统及代谢机制以进行生存和繁衍。对这些独特的生理结构及机能进行研究,探讨深海生物适应特殊的生存环境而发生的基因变异无论在科学上还是实际开发应用上都具有重大的意义。蛋白酶是一个主要酶制剂品种,其产量仅次于淀粉酶。蛋白酶在工业、农业、医药卫生、洗涤、生物制剂、食品等方面都有极其广泛的应用。
     我们从深海的样品中筛选到一株可分泌低温蛋白酶的菌株DY-A。此菌株为嗜冷嗜碱细菌,经16SrRNA鉴定,属假单胞菌属。对菌株DY-A进行了初步的细菌学和生理生化方面的研究后,我们研究了其产蛋白酶的最佳条件并利用Sephadex G-100葡聚
    
    摘要
    糖分子筛和CL一6B DEAE纤维素离子交换柱纯化了酶蛋白,考察了蛋白酶的性质,发
    现此酶具有低温活性,在高碱性环境中有活力,属于丝氨酸蛋白酶;提取了菌株DY一A
    的总DNA并构建了它的基因组质粒文库,进行了极端微生物蛋白酶基因克隆的尝试。
    通过以上的研究,该菌株有望成为进一步研究低温碱性蛋白酶的出发菌株,在基础研
    究和工业生产上有较大的应用潜力。
The Antarctica plays an important role in the study of global changes and it is the only land without large-scale human activities influence which makes it is sensitive to the global climate changes. Penguin is the most impartment factor in the Antarctic environment and its dropping sediment records the history of the population and the distribution change on the Ardley Island. It is possible for us to detect the relation among ecology, environment changes, climate variance and human activities by studying the penguin dropping sediment.
    The sediment core was collected from the shore on the Ardley Peninsula during the eighteenth China Antarctic Research Expedition using a 12cm-diameter PVC pipe. The number of cultural bacteria was higher than other areas of the Antarctic and there was an obvious decrease at 7th layer. The total DNA of every layer was extracted and the 16S rDNA was amplified by PCR. The diversity of 16S rDNA was studied by RFLP (Restriction Fragment Length Polymorphism) and phylogenetic analysis. In the sediment, bacteria belonging to the CFB (Cytophaga-Flexibacter-Bacterioides) group and the β-Proteobacteria, γ-Proteobacteria were the main groups. The 16S rDNA diversity of 7th layer was different from that of other layers, including the analysis of RFLP, gene type and the population of CFB group. And the population of β-Proteobacteria showed inverse ratio with that of CFB group. Fifteen percent of the total strains were related with degradation of hydrocarbon and one strain with heavy metal contamination. The contents of ami
    no acid were analyzed and the amount of Cys, Met, Tyr, His and Trp increased at 2nd and 7th layers while other kinds of amino acid decreased. The relationship between microbiology and environment changes and human activities influence was assumed based on these results.
    More than 50% of the earth's surface is covered by deep-sea area. Deep-sea microorganism has especial histiocyte system, metabolism and enzyme system in long-term evolution in deep-sea environment. And the microbial proteases are among the most important hydrolytic enzymes and have been studied extensively since the advent of enzymology. The bulk uses of alkaline proteases in industrial sectors are including food and feed industry, peptide synthesis, leather industry, management of industrial and household waste, photographic industry.
    A strain named DY-A which produces protease was isolated from deep-sea sediment. It was identified as Pseudomonas spp. with 16S rDNA sequence and phylogenetic analysis. It can grow at a wide range of pH and salt concentration and best at 10.C. The strain produced maximum protease activity after growth at 10.C, initial pH 10.0 and inoculation volume 0.5% for 48~72h on a shaker by speed of 200r/min. Protease was purified by Sephadex G-100 and CL-6B DEAE Sepharose. The optimum pH and temperature for the protease activity are pH 10.0 and 40.C. The enzyme is cold-active alkaline serine protease. Some other properties of
    
    
    
    
    the strain and the protease were discussed in detail. Total DNA of strain DY-A was extracted and clone of the protease gene was in progress
引文
1.朱城,陈传康.南极乔治王岛的地理环境分析.地理学报,46(3),300-304
    2.郑祥身等.西南极乔治王岛长城站地区第三纪火山岩地质学特征及岩浆的生成演化.南极研究,3(2),10-108
    3.赵烨,李天杰.南极乔治王岛菲尔德斯半岛土壤发生类型及其诊断特性.北京师范大学学报,30(4),529-535
    4.谢又予.中国南极长城站地区地貌与沉积.北京.海洋出版社,1-8
    5. Burger A E. Terrestrial food webs in the sub-Antarctic island. In: Antarctic nutrient cycles and food webs. Springer-Verlag Berlin Heidelberg
    6. Smith R L. Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems. In: Antarctic nutrient cycles and food webs. Springer-Verlag Berlin Heidelberg
    7. Janes D N. Energetics, growth, and body composition of Adelie penguin chicks, Pygoscelis adeliue. Physiological Zoology, 70(2), 237-243
    8. Laws R M. Seals. In: Antarctic ecology. London Academic Press, 621-715
    9.沈静,徐汝梅,周国法等.南极菲尔德斯半岛陆地、淡水、潮间带、浅海各生态系统的结构及其相互关系的研究.极地研究,11(2),100-112
    10.袁兴中,王慧,刘红.生态系统学原理.山东省地图出版社,300
    11. Parker B C, Samsel G L. Nutrient factors limiting primary productivity in simulated and field Antarctic microecosystems. V J Sci, 23, 64-71
    12. Wodehouse E B, Parker B C. Atmospheric ammonia nitrogen: a potential source of nitrogen eutrophication of freshwater Antarctic ecosystems. In: Terrestrial biology. Washington DC. 155-167
    13.杨玉玲,黄凤鹏,吴宝铃.南极菲尔德斯半岛夏季潮间带环境因子的时空变化.极地研究,9(1),53-57
    14.李瑞香,俞建銮,吕培顶.南极长城湾网采浮游植物的数量分布.南极研究,4(4),12-15
    15. Knox G A. The biology of the southern ocean. Cambridge University Press, 444
    16. Abbott S B, Benninghoff W S. Orientation environmental change studies to the conservation of Antarctic ecosystem. In: Antarctic ecological changes and conservation, Berlin, Springer-Verlag, 394-403
    17. Wolff E W. Signals of atmospheric pollution in polar snow and ice. Antarctic Sci, 2, 189-205
    18. Bonner W N. Antarctic conservation and management. Polar Biol, 14, 3301-305
    19. Bonner W N. International agreements and the conservation of Antarctic systems. In: Antarctic ecological change and conservation. Berlin, Springer-Verlag, 386-393
    20. Campbell I B, Claridge G G, Balks M R. The effect of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctic. Antarctic Sci, 6, 307-314
    21. Picciotto E, Wilgain S. Fission products in Antarctic snow, a reference level for measuring accumulation. J Geophys Res, 68, 5965-5972
    22. Jouzel J, Merlivat L, Pourchet M et al. A continuous record of artificial fallout at South Pole. Eath Planet Science Letter, 45, 188-200
    23. Pourchet M, Pinglot F, Lorius C. Some meteorological application of radioactive fallout measurements in Antarctic snows. J Geophys Res, 88, 6013-6030
    24. Sladen W J, Menzie G M, Reichel W L. DDT residues in Adelie Penguins and a crabeater sael from Antarctica. Nature, 210, 670-673
    25. Brewerton H V. DDT in fats of Antarctic animals. N Z J Sci, 12, 194-199
    
    
    26. Conroy I W, French M C. Organochlorine levels in two species of Antarctic birds. Brit Antarct Surv Bull, 38, 43-47
    27. Lukowski A B. DDT residues in the tissues and eggs of three species of penguins from breeding colonies at Admiralty Bay. Polish Polar Res, 4, 129-134
    28. Rudolph E D, Benninghoff W S. Competitive and adaptive research of invading verous indigenous biotas in Antarctica-A plea for organism monitoring. In: Adaptations within Antarctic Ecosystems. Washington DC, Smithsonian Institution, 1121-1221
    29. Fifield R. International research in the Antarctic. Oxford. Oxford University Press, 127-132
    30. Culik B, Adelung D, Woekes A J. The effects of disturbance on the heart rate and behaviour of Adelie Penguins during the breeding season. In: Antarctic Ecological Change and Conservation. Belin. Springer-Verlag, 178-182
    31. Campbell I B, Claridge G G. Antarctic soils, weathering processes and environment. Oxford. Elsevier, 329-340
    32. Fahy F W. Aluminium corrosion assessment in Antarctica. N Z Antarct Res, 1, 20-25
    33. Claridge G G, Campbell I B, Powell H K et al. Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarctic Sci, 7,9-14
    34. Sheppard D S, Campbell I B, Claridge G G et al. Contamination of soil about Vanda Station. Antarctica. Inst Geol Nuclear Sci Recpt, 144
    35.赵烨,李天杰,赵俊琳.人类活动对南极乔治王岛菲尔德斯半岛环境的影响.极地研究,10(4),262-271
    36. Carrasco A, Prendez M. Element distribution of some soils of continental Chile and Antarctic Peninsula, Projection to atmospheric pollution. Water, Air and Soil Pollution, 57-58,713-722
    37. Green G, Nicholas P D. Hydrocarbons and sterols in marine sediments and soils at Davis Station, Antarctica: a survey for human-derived contaminants. Antarctic Sci, 7, 137-144
    38. Gripps G C. The extent of hydrocarbon in marine environment from a research station in Antarctica. Mar Pollution Bull, 25,288-292
    39. Kennicutt M C, Mcdonald T J, Denoux G J et al. Hydrocarbon contamination on the Antarctic Paninsula: Ⅰ. Arthur harbor subtidal sediments. Mar Pollution Bull, 24, 499-506
    40. Roura R, Fairley W. One word: Antarctica today. Webstories Inc.
    41. Wilkniss P E. Fuel spill clean up in the Antarctic. Antarct J U S, 25, 3-10
    42. Harris C M. Environmental affects of human activities on King George Island, South Shetland Islands, Antarctica. Polar Record, 27, 193-204
    43. Boutron C F, Patterson C C. Relative levels of natural and anthropogenic lead in recent Antarctic snow. J Geophys Res, 92, 8454-8464
    44. Boutron C F, Wolff E W. Heavy metal and sulphur emissions to the atmosphere from human activities in Antarctica. Atmospheric Environment, 23, 1669-1675
    45. Campbell I B, Claridge G G, Balks M R. The effect of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarctic Sci, 6, 307-314
    46. Pecherzewski K. Air pollution and natural sedimentation from the atmosphere in the region of the Admiralty Bay. Polish Polar Res, 8, 145-151
    47. Molski B, Bytnerowicz A, Dmuchowski W. Air pollution with sulphur dioxide and fluorine compounds in the vicinity of the Artowski Station, King George Island, South Shetland Islands. Polish Polar Res, 2, 87-93
    48. Harris G P, Kershaw K A. Thallus growth and disturbance of stored metabolites in the phycobionts of the lichens Parmelia sulcata and P. physodes. Canadian J Botany, 49, 1367-1372
    49. Olech M. Preliminary observations on the content of heavy metals in thalli of Usnea
    
    Antarctic Du Rietyz in the Artwoski Polish Antarctic Station. Polish polar Res. 12, 129-131
    50. Adamson E, Seppelt R D. A comparison of airborne pollution damage in selected lichens and mosses at Casey Station, Wilkes Land, Antarctica. In: Antarctic Ecological Change and Conservation. Berlin. Springer-Verlag, 347-363
    51. Roser D J, Melik D R, Seppelt R D. Reductions in polyhydric alcohol content of lichens as an indicator of environmental pollution. Antarctic Sci, 4, 185-189
    52. Boczek B A. Specially protected areas as instruments for the conservation of the Antarctic nature. In: Antarctic Challenge Ⅱ: Conflicting Interests, Co-operation, Environmental Protection, Economic Development. Belin. Dunker & Humboldt, 63-70
    53. Wilson R P, Culik B, Danfeld R et al. People in Antarctica: how much do Adelie Penguins care? Polar Biol, 11,363-370
    54. Thomson R B. Effects of human disturbance on an Adelie penguin rookery and measures of control. In: Adaptations within Antarctic Ecosystems. Washington DC. Smithsonian Institution, 1177-1180
    55. Fredrickson L H. Environmental awareness at Hallett Station. Antatct J U S, 6, 57
    56. Wilson K J, Talor R H, Barton K J. The impact of man on Adelie penguins at Cape Hallett, Antarctica. In: Antarctic Ecological Change and Conservation. Berlin. Springer-Verlag, 178-182
    57. Woehler E J, Penney R L, Creet S M et al. Impacts of human visitors on breeding success and long-term population trends in Adelie penguins at Casey, Antarctica. Polar Biol, 14, 269-274
    58. Wang Z, Norman F I. Timing of breeding, breeding success and chick growth in south polar skuas in the eastern Larsemann Hills, Princess Elizabeth Land, East Antarctica. Notornis, 40, 189-203
    59. Wang Z, Norman F I, Burgess J S et al. Human influences on breeding of in the eastern Larsemann Hills, Princess Elizabeth Land, East Antarctica. Polar Record, 32, 43-50
    60. Johnston B R. Skua numbers and conservation problems at Cape Hallett, Antarctica. Nature, 231, 468
    61. Oelke H. Natuerliche oder anthropogene Ppulationsveraenderung von adelieppinguinen im Ross-Meer-Sektor der Antarktis. J Orn, 119, 1-13
    62. Young E C. Long-term stability and human impact in Antarctic skuas and Adelie penguins. In: Antarctic Ecological Change and Conservation. Berlin. Springer-Verlag, 231-236
    63. Smith R I. Colonization and recovery by cryptograms following recent volcanic activity on Deception Island, South Shetland Island. Brit Antarct Surv Bull, 62, 25-51
    64. Broady P A, Given D, Greenfield L et al. The biota and environment of fumaroles on Mt. Melbourne, northern Victoria Land. Polar Biol, 7, 97-113
    65. Kappen K, Straka H. Pollen and spores transport into the Antarctic. Polar Biol, 8, 173-180
    66. Harris C M. Environmental management on King George Island, South Shetland Islands, Antarctica. Polar Record, 27, 313-324
    67. Broady P A, Smith R A. A preminary investigation of the diversity, survivability and dispersal of algae introduced into Antarctica by human activity. Proc NIPR Symp, 185-197
    68. Kerry K, Clarke J. Time for concern: is the health of Antarctica wildlife in danger? Antarctic Sci, 7,343
    69. Rudolph E D, Benninghoff W S. Competitive and adaptive research of invading verous indigenous biotas in Antarctica-A plea for organism monitoring. In: Adaptations within Antarctic Ecosystems. Washington DC, Smithsonian Institution, 1121-1221
    70. Heal O W, Bailey A D, Latter P M. Bacteria, fungi and protozoa in Signy Island soils
    
    compared with those from a temperate moorland. Phil Trans Royal Soc London, 252, 191-197
    71. Baker J H. Quantitative study of yeasts and bacteria in a Signy Island Peat. Brit Antarctic Surv Bull, 25, 51-55
    72. Baker J H, Smith D S. The bacteria in an Antarctic peat. J Applied Bacteriol, 35, 589-596
    73. Brandy P A. Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Land, Antarctica. Phycologia, 23,267-271
    74. Tearle P V, Richard J. Ecophysiological grouping of Antarctic environmental bacteria by API20NE and fatty acid fingerprints. J Appl Bacteriol, 63,497-503
    75. Broady P A. Soils heated by volcanism. In: Antarctic Microbiology. New York. Wiley-Liss Inc, 413-432
    76. Vishniac H S. The microbiology of Antarctic soil. In: Antarctic Microbiology. New York. Wiley-Liss Inc, 297-341
    77. Lacy G H, Cameron R E, Hanson R B et al. Microbiological analyses of snow and air from the Antarctic interior. Antarct J U S, 5, 88-89
    78. Cameron R E, Morelli F A, Randall L P. Aerial, aquatic and soil microbiology of Don Juan Pond, Antarctic. Antarct J U S, 7, 254-258
    79. Boyd W L, Staley J T, Boyd J W. Ecology of microorganisms of Antarctica. In: Antarctic Soils and Soil Forming Processes. Am Geophys Union Antarct Res Ser. 8, 125-159
    80. Boyd W L, Boyd J W. Soil microorganisms of the McMurdo Sound area, Antarctic. Applied Microbiol, 11,116-121
    81. Nathan S, Schulte F J. Recent thermal and volcanic activity on Mt. Melbourne, northern Victoria Land, Antarctica. N Z J Geol Geophys, 10, 422-430
    82. Lyon G L, Giggenbach W F. Geothermal activity in Victoria Land, Antarctica. N Z J Geol Geophys, 17, 511-521
    83. Longton R E, Holdgate M W. The south Shetland Islands: Ⅳ. Botany. Brit Antarct Surv Sci Rept, 94
    84. Smith R I. Botanical survey of Deception Island. Brit Antarct Surv Bull, 80, 129-136
    85. Risebrough R W. Transfer of organochlorine pollution to Antarctica. In: Adaptations within Antarctic Ecosystems. Washington DC. Smithsonian Institution, 1203-1210
    86. Volkening J, Heumann K G. Determination of heavy metals at the pg/g level in Antarctic snow with DPASV and IDMS. Fresnius'Z Analyt Chemie, 331, 174-181
    87. Wolff E W, Peel D A. Closer to a true value for heavy metal contamination in recent Antarctic snow by improved contamination control. Ann Glaciol, 7, 61-69
    88. Boutron C F, Patterson C C. Relative levels of natural and anthropogrnic lead in recent Antarctic snow. J Geophys Res, 92, 8454-8464
    89. Peel D A. Organochlorine residues in Antarctic snow. Nature, 254, 324-325
    90. Tanabe S, Hidaka H, Tatsukawa R. PCBs and chlorinated hydrocarbon pesticides in Antarctic atmosphere. Chemosphere, 12, 277-288
    91. Legrand M R, Delmas R J. Relatice contributions of tropospheric sources to mitrate in Antarctic snow. Tellus, 38B, 236-249
    92. Mulvaney R, Peel D A. Anions and cations in ice cores from Dollemen Island and the Plamer Land Plateau, Antarctic Peninsula. Ann Glaciol, 10, 121-125
    93. Koide M, Michel R, Goldberg E D. Characterization of radioactive fallout from pre- and post-moratorium tests to polar ice caps. Nature, 296, 544-547
    94. George J L, Frear D E. Pesticides in the Antarctic. J Applied Ecol, 3, 155-167
    95. Sladen W J, Menzie G M, Reichel W L. DDT residues in Adelie Penguins and a crabeater sael from Antarctica. Nature, 210, 670-673
    96. Totton J O, Ruzicka J H. Organochlorine pesticides in Antarctica. Nature, 215,346-348
    
    
    97. Risebrough R W, Carmignani G M. Chlorinated hydrocarbons in Antarctic birds. In: Conservation Problems in Antarctica. Virginia. Virginia Polytechnic Institute and State University, 63-68
    98. Lukowski A B. DDT residues in the tissues and eggs of three species of penguins from breeding colonies at Admiralty Bay. Polish Polar Res, 4, 129-134
    99. Lukowski A B. Chlorinated hydrocarbons. In: The Maritime Antarctic Coastal Ecosystem of Admiralty Bay. Warsaw. Polish Academy of Sciences, 197-198
    100. Bonner W N. International agreements and the conservation of Antarctic systems. In: Antarctic Ecological Change and Conservation. Berlin. Springer-Verlag, 386-393
    101. Sun L G, Xie Z Q, Zhao J L. A 3,000-year record of Penguin populations. Nature, 407, 858
    102. Reddy G S, Prakash J S, Vairamani M, et al. Plannococus antarcticus and Placococus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles, 6(3), 253-261
    103. Miller K J, Leschine S B, Huguenin R L. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil. Adv Space Res, 3(8), 43-47
    104. Mauro F, Roberto D. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental Microbiology, 64(10), 3838-3845
    105. Bernhard S, Ingrid H, Rugolf A, et al. α-and β-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Applied and Environmental Microbiology, 67(2), 632-645
    106. George A L. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: comparison of a polluted and pristine site. Mar Environ Res, 53(4), 403-415
    107. Baraniecki C A, Aislabie J, Foght J M. Characterization of Sphingomonas sp Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol, 43(1), 44-54
    108. Delille D. Response of Antarctic soil bacterial assemblages to contamination by diesel fuel and crude oil. Microbial Ecology. 40, 159-168
    109. Mark V B, John P B. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FWMS Microbiology Ecology. 35,267-175
    110. Evelyne B, Hans H, Anja H, et al. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctic. Extremophiles, 5, 23-33
    111. Gerard M. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317-322
    112. James E M, Stephan B, Justin P C, et al. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology, 36, 139-151
    113.陈海敏,陈胜明.生物技术在分子微生物生态学上的应用.微生物学通报,26(6),436-439
    114.张晓君,冯清平,白玲.分子生态学方法在微生物多样性研究中的应用.微生物学通报,26(1),68-70
    115. E Noli et al. Comparative analysis of genetic relationships in barley based on RFLP and RAPD markers. Genome, 40(5), 689-696
    116. Li L N. Distribution of pressure-regulated operons in deep-sea bacteria. FEMS Microbiol. Letters, 59(2), 159-166
    117. Itoh et al. Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus. Archives of Microbiol, 170(3), 155-16
    
    
    118. Reysenbach A.L et al. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone Nation Park. Appl Environ Microbiol. 60, 2113-2119
    119. Hermine J.M. Harmsen et al. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol, 63,4061-4068
    120. Harmsen H.J.M et al. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichments of thermophilic subpopulations. Appl Environ Microbiol, 63, 2876-2883
    121. Hough D W, Danson M J. Extremzymes. Current Opinion in Chemical Biology, 3, 39-46
    122. Brown J R, Doolittle W F. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev, 61,456-502
    123. Danson M J, Hough D W. Structure, function and stability of enzymes from the Archaea. Trends Microbiol, 6, 307-314
    124. Hugenholtz P, Pitulle C Hershberger K L, et al. Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol, 180, 366-376
    125. Russell R J M, Ferguson J M C, Hough D W, et al. The crystal structure of citrate synthase from the hyperthermophilic Archaeon Pyrococcus furiosus at 1.9 resolution. Biochemistry, 36. 9983-9994
    126. Kulakova L, Galkin A, Kurihara T et al. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol, 65(2), 611-617
    127.张锐,曾润颖.极端酶的研究进展.台湾海峡,20(3),405-410
    128. John P B, Sharee A M, Mark V Bet al. Appl Environ Microbiol, 63(8), 3068-3078
    129. Hoe N P, Goguen J D. J Bacteriol, 175, 7901-7909
    130. Ray M K, Seshu K G, Shivaji S. J Bacteriol, 176(14), 4343-4349
    131. Ray M K, Seshu K G, Shivaji S. Microbiology, 140, 3217-3223
    132. Herbert R A. Molecular Biology and Biotechnology of Extremophiles. New York.
    133. Toshio S, Shoichi H, Hajime W et al. FEMS Microbiol Lett, 152, 33-320
    134. Guillou C, Guespin J F. Appl Environ Microbiol, 9, 3319-3324
    135. Szer W. Biochim Biophy Acta, 213,159-170
    136. Oshima A, Fukunaga N, Sasaki S. J Faculty of Science, Hokkaido University, 514, 1-10
    137. Araki T. J Gen Microbiol, 137, 817
    138. Peter G, Mohamed A M. Arch Microbiol, 166, 293-300
    139. Julseth C R, Inniss W E. Can J Microbiol, 36, 519-524
    140. Potier P, Deevet A M, Hipkiss A. J Gen Microbiol, 136, 283-291
    141. Whyte L G, Greer C W, Immiss W E. Can J Microbiol, 42, 99-106
    142. Chablain P A, Philippe G, Groboillot A et al. Res Microbiol, 148, 153-161
    143. Shimizu S, Shinmen Y, Kawashima H. Biochem Biphys Res Common, 150, 335-341
    144. Trimbur D E, Gutshall K R, Prema P et al. Appl Environ Microbiol, 60, 4544-4552
    145. Brenchely J E. J Indus Microbiol, 17, 432-437
    146. Feller G, LeBussy O, Gerday C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant alpha-amylase. Appl Environ Microbiol, 64, 1163-1165
    147. Gerike U, Danson MJ, Russell NJ, Hough DW: Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2-3R. Eur J Biochem, 248:49-57
    148. Coombs J M, Brenchiley J E. Biochmical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Applied and Evironmental Microbiology, 5443-5450
    149. Gupta R, Beg Q K, Lorenz R Bacterial alkaline proteases: molecular approaches and
    
    industrial applications. Appl Microbiol Biotechnol, 59, 15-32
    150.胡学智.蛋白酶,见:酶制剂工业.北京,科学出版社,1984,421-431
    151. Kalisz H M. Microbial proteinases. Adv Biochem Eng Biotechnol, 36, 1-65
    152. Kumar C G, Takagi H. Microbial alkaline proteases: from abioindustrial viewpoint. Biotechnol Adv, 17, 561-594
    153. Outtrup H, Boyce COL. Microbial proteinases and biotechnology. In: Microbial enzymes and biotechnology. Elsevier, London, 227-254
    154. Godfrey T, West S. Introduction to industrial enzymology. In: Industrial enzymology, Macmillan Press, London, 1-8
    155. Aunstrup K. Proteinases. In: Microbial enzymes and bioconversions. Academic Press, New York, 50-114
    156. Ward O P. Proteolytic enzymes. In: Comprehensive biotechnology, the practice of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, 789-818
    157. Rao M B, Tanksale A M, Ghatge M S et al. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev, 62, 597-635
    158. Anwar A, Saleemuddin M. Alkaline proteases: a review. Bioresour Technol, 64, 175-183
    159. Shimogaki H, Takeuchi K, Nishino T et al. Purification and properties of a novel surface-active agent- and alkaline-resistant protease from Bacillus sp. Y. Agric Biol Chem, 55, 2251-2258
    160. Kato T, Yamagata Y, Arai T et al. Purification of a new extracellular 90-kDa serine proteinase with isoelectric point of 3.9 from Bacillus subtilis (natto) and elucidation of its distinct mode of action. Biosci Biotech Biochem. 56, 1166-1168
    161. Yamagata Y, Abe R, Fugita Y et al. Molecular cloning and nucleotide sequence of the 90 k serine protease gene, hspK, from Bacillus subtilis (natto) No. 16. Curr Micro-biol, 31,340-344
    162. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol, 41, 179-243
    163. Rawlings N D, Polgar L, Barrett A J. A new family of serine-type peptidases related to prolyl oligopeptide. Biochem J. 279, 907-908
    164. Siezen R J, Leunissen J A M. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci, 6, 501-523
    165. Graycar T P. Proteolytic cleavage, reaction mechanism. In: Bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley. New York, 2214-2222
    166. Morita Y, Hasan Q et al. Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Appl Microbiol Biotechnol. 50, 669-675
    167. Liao D I, Remington S J. Structure of wheat serine carboxypeptidase Ⅱ at 3.5- resolution: a new class of serine proteinase. J Biol Chem, 265, 6528-6531
    168. Wells J A, Ferrari E. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res, 11,7911-7925
    169. Stahl M, Ferrari E. Replacement of the Bacillus subtilis subtilisin structural gene with in vitro-derived deletion mutant. J Bacteriol, 158, 411-418
    170. Jacobs I, Eliasson M, Uhlen M. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res, 13, 8913-8926
    171. Yoshimoto T, Oyama H et al. Cloning and expression of subtilisin amylosacchariticus gene. J Biochem, 103, 1060-1065
    172. Nakamura T, Yamagata Y, Ichishima E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem, 56, 1869-1871
    173. Yamagata Y, Isshiki K, Ichishima E. Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzyme Microb Technol, 17, 653-663
    
    
    174. Von der Osten, Branner S, Hastrup S et al. Protein engineering of subtilisins to improve stability in detergent formulations. J Biotechnol, 28, 55-68
    175. Takami H, Kobayashi T, Kobayashi M et al. Molecular cloning, nucleotide sequence, and expression of the structural gene for alkaline protease from Bacillus sp. 221. Biosci Biotechnol Biochem, 56, 1455-1460
    176. Neurath H. Evolution ofproteolytic enzymes. Science, 224, 350-357
    177. Koide Y, Nakamura A, Uozumi T et al. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol, 167, 110-116
    178. Beg Q K, Saxena R K, Gupta R. Derepression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem, 37, 1103-1109
    179. Varela H, Ferrari MD, Belobradjic L et al. Skin unhairing proteases of Bacillus subtilis: production and partial characterization. Biotechnol Lett, 19, 755-758
    180. Hameed A, Keshavarz T, Evans CS. Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J Chem Technol Biotechnol, 74, 5-8
    181. Puri S, Beg Q K, Gupta R. Optimization of alkaline protease production from Bacillus sp. using response surface methodology. Curr Microbiol, 44, 286-290
    182. Hubner U, Bock U, Schugerl K. Production of alkaline serine protease subtilisin Carlsberg by Bacillus licheniformis on complex medium in a stirred tank reactor. Appl Microbiol Biotechnol, 40, 182-188
    183. Mao W, Pan R, Freedman D. High production of alkaline protease by Bacillus licheniformis in fedbatch fermentation using a synthetic medium. J Ind Microbiol, 11, 1-6
    184. Van Putten A B, Spitzenberger F, Kretzmer G et al. Improvement of the production of subtilisin Carlsberg alkaline protease by Bacillus licheniformis by online monitoring and control in a stirred tank reactor. J Biotechnol, 49, 83-93
    185. Frankena J, Verseveld H W van, Stouthamer A H. A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease in Bacillus licheniformis. Appl Microbiol Biotechnol, 22, 169-176
    186. Frankena J, Koningstein G M, Verseveld H W van et al. Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis. Appl Microbiol Biotechnol, 24, 106-112
    187. De Coninck J, Bouquelet S, Dumortier V et al. Industrial media and fermentation processes for improved growth and protease production by Tetrahymena thermophila. J Ind Microbiol Biotechnol, 24,285-290
    188. Varela H, Ferrari M D, Belobradjic L et al. Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J Microbiol Biotechnol, 12, 643-645
    189. Landau N S, Egorov N S, Gomova IB et al. Immobilization of Bacillus firmus cells in cellulose triacetate fibers and films and their use for proteinase biosynthesis. Microbiology (USSR), 64, 530-536
    190. Landau N S, Gornova I B, Gulikova O M et al. Proteinase production by free and immobilized cells of Bacillus firmus 44b. Microbiology (USSR), 66, 310-315
    191. Hotha S, Banik R M. Production of alkaline protease by Bacillus thuringiensis H14 in aqueous two-phase systems. J Chem Technol Biotechnol, 69, 5-10
    192. Lee Y H, Chang H N. Production of alkaline protease by Bacillus licheniformis in an aqueous two-phase system. J Ferment Bioeng, 69, 89-92
    193. Chakraborty R, Srinivasan M. Production of a thermostable alkaline protease by a new Pseudomonas sp. by solid substrate fermentation. J Microb Biotechnol, 8, 7-16
    194. George S, Raju V, Krishnan M R V et al. Production of protease by Bacillus
    
    amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem, 30, 457-462
    195. Kaur S, Vohra R M, Kapoor M et al. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J Microbiol Biotechnol, 17, 125-129
    196. Feng Y Y, Yang W B, Ong S L et al. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilis strain. Appl Microbiol Biotechnol, 57, 153-160
    197. Fleming A B, Tangney M, Jorgensen P L et al. Extracellular enzyme synthesis in spore-deficient strain of Bacillus licheniformis. Appl Environ Microbiol, 61, 3775-3780
    198. Shah D N, Shah V D, Nahete P N et al. Isolation of Bacillus licheniformis mutants for stable production profiles of alkaline protease. Biotechnol Lett, 8, 103-106
    199. Bierbaum G, Karutz M, Botz D W et al. Production of protease with Bacillus licheniformis mutants insensitive to repression of exoenzyme biosynthesis. Appl Microbiol Biotechnol, 40, 611-617
    200. Estell D A, Graycar T P, Wells J A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem, 260, 6518-6521
    201. Pantoliano M W, Whitlow M, Wood J F et al. Large increases in general stability for the subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry, 28, 7205-7213
    202. Narhi L O, Stabinsky Y, Levitt M et al. Enhanced stability of subtilisin by three point mutation. Biotechnol Appl Biochem, 13, 12-24
    203. Takagi H, Takahashi T, Momose H et al. Enhancement of the thermostability of Subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic protease. J Biol Chem, 265, 6874-6878
    204. Aehle W, Sobek H, Amory A et al. Rational protein engineering and industrial application: structure prediction by homology and rational design of protein- variants with improved "washing performance"-the alkaline protease from Bacillus alcalophilus. J Biotechnol, 28, 31-40
    205. Yang Y, Jiang L, Yang S et al. A mutant subtilisin E with enhanced thermostability. World J Microbiol Biotechnol, 16, 249-251
    206. Yang Y, Jiang L, Zhu L et al. Thermal stable and oxidation resistant variant of subtilisin E. J Biotechnol, 81, 113-118
    207. Bech L M, Branner S, Breddam K et al. Oxidation stable detergent enzymes. US Patent 5,208,158
    208. Branner S, Hastrup S, Eriksen N et al. Subtilisin mutants. US Patent 5,482,849
    209. Mitchinson C, Wells JA. Protein engineering of disulfide bonds in subtilisin BP Biochem, 28, 4807-4815
    210. Jaeger K-E, Eggert T, Eipper Aet al. Directed evolution and the creation of enantioselective biocatalysis. Appl Microbiol Biotechnol, 55, 519-530
    211. Petrounia I P, Arnold F H. Designed evolution of enzymatic properties. Curr Opin Biotechnol, 11,325-330
    212. Arnold F H. Directed evolution: creating biocatalysts for the future. Chem Eng Sci, 51, 5091-5102
    213. Tobin M B, Gustafsson C, Huisman G W. Directed evolution: the "rational" basis for the "irrational" design. Curr Opin Struct Biol, 10, 421-427
    214. You L, Arnold F H. Directed evolution of subtilisin E in Bacillus subtilis to entrance total activity in aqueous dimethylformamide. Protein Eng, 9, 77-83
    215. Zhao H, Giver L, Shao Z. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnol, 16, 258-261
    216. Taguchi S, Ozaki A, Momose H. Engineering of a cold-adapted protease by sequential
    
    random mutagenesis and a screening system. Appl Environ Microbiol, 64, 492-495
    217. Zhao H, Arnold F H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng, 12, 47-53
    218. Klibanov A M. Improving enzymes by using them in organic solvents. Nature, 409, 241-246
    219. Wong S S, Wong L JC. Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol, 14, 866-874
    220. Inada Y, Takahashi K, Yoshimoto T et al. Application of polyethylene glycolmodified enzymes in biotechnological processes: organic solvent-soluble enzymes. Trends Biotechnol, 4, 190-194
    221. Stahl M, Wistrand U J, Mansson M O et al. Induced stereoselectivity and substrate selectivity of bio-imprinted α-chymotrypsin in anhydrous organic media. J Am Chem Soc, 113, 9366-9368
    222. Russell A J, Klibanov A M. Inhibitor-induced enzyme activation in organic salts. J Biol Chem, 263, 11624-11626
    223. Kise H, Hayakawa A, Noritomi H. Protease-catalyzed synthetic reactions and immobilization-activation of the enzymes in hydrophilic organic solvents. J Biotechnol, 14, 239-254
    224. Torsvik V, Goksφyr J, Daae F L. High diversity in DNA of soil bacteria. Appl Environ Microbiol, 56, 782-787
    225. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59, 143-169
    226. Hugenholtz P, Goebel B M, Pace N R. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol, 180, 4765-4774
    227. Rondon M R, August P R, Bettennann A D et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 66, 2541-2547
    228. Handelsman, J, Rondon M R, Brady S F et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 5, R245-R249
    229. Cottrell M T, Moore J A, Kirchman D L. Chitinases from uncultured marine microorganisms. Appl Environ Microbiol, 65, 2553-2557
    230. Henne A, Daniel R, Schmitz R A et al. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol, 65, 3901-3907
    231. Henne A, Schmitz R A, Bomeke M et al. Screening of environmental DNA Libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol, 66, 3113-3116
    232. Radomski C C A, Seow K T, Warren R A J et al. Method for isolating xylanase gene sequences from soil DNA, compositions useful in such method and compositions obtained thereby. US Patent 5,849,491
    233. Sakiyama T, Toyomasu T, Nagata A et al. Performance of protease as a cleaning agent for stainless steel surfaces fouled with protein. J Ferment Bioeng, 55,297-301
    234. Nakagawa A. Method for cleaning a contact lens. US Patent 5,314,823
    235. Kyon Y T, Kim J O, Moon S Y et al. Extracellular alkaline proteases from alkalophilic Vibrio metschnikovii strain RH530. Biotechnol Lett, 16, 413-418
    236. Kim H K, Hoe H S, Suh D S et al. Gene structure and expression of the gene from Beauveria basiana encoding bassiasin Ⅰ, an insect cuticle-degrading serine protease. Biotechnol Lett, 21,777-783
    237. Kanehisa K. Woven or knit fabrics manufactured using yarn dyed raw silk. US Patent 6,080,689
    
    
    238. Puri S. An alkaline protease from a Bacillus sp.: Production and potential applications in detergent formulation and degumming of silk. MSc thesis, University of Delhi, New Delhi
    239. Dorado J, Field J A, Almendros G et al. Nitrogen-removal with protease as a method to improve the selective delignification of hemp stemwood by whiterot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol, 57, 205-211
    240. Neklyudov A D, Ivankin A N, Berdutina A V. Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol, 36, 452-459
    241. Rebeca B D, Pena-Vera M T, Diaz-Castaneda M. Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. J Food Sci, 56, 309-314
    242. Matsui T, Matsufuji H, Seki E et al. Inhibition of angiotensin Ⅰ-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscles. Biosci Biotechnol Biochem, 57, 922-925
    243. Fujimaki M, Yamashita M, Okazawa Y et al. Applying proteolytic enzymes on soybean. 3. Diffusable bitter peptides and free amino acids in peptic hydrolyzate of soybean protein. J Food Sci, 35,215-218
    244. Perea A, Ugalde U, Rodriguez I et al. Preparation and characterization of whey protein hydrolysates: application in industrial whey bioconversion processes. Enzyme Microb Technol, 15, 418-423
    245. O'Meara G M, Munro P A. Selection of a proteolytic enzyme to solubilize lean beef tissue. Enzyme Microb Technol, 6, 181-185
    246. Ohmiya K, Tanimura S, Kobayashi T et al. Application of immobilized alkaline protease to cheese-making. J Food Sci, 44, 1584-1588
    247. Tanimoto S-Y, Tanabe S, Watanabe M et al. Enzymatic modification of zein to produce a nonbitter peptide fraction with a very high Fischer ratio for patients with hepatic encephalopathy. Agric Biol Chem, 55, 1119-1123
    248. Dalev P. An enzyme-alkaline hydrolysis of feather keratin for obtaining a protein concentrate for fodder. Biotechnol Lett, 12, 71-72
    249. Dalev PG. Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol, 48, 265-267
    250. Cheng S W, Hu M N, Shen S W et al. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotech Biochem, 59, 2239-2243
    251. Andersen L P. Method for dehairing of hides or skins by means of enzymes. US Patent 5,834,299
    252. Hameed A, Natt M A, Evans C S. Production of alkaline protease by a new Bacillus subtilis isolate for use as a bating enzyme in leather treatment. World J Microbiol Biotechnol, 12, 289-291
    253. Ichida J M, Krizova L, LeFevre C A et al. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods, 47,199-208
    254. Takami H, Nakamura S, Aono R et al. Degradation of human hair by a thermostable alkaline protease from alkalophilic Bacillus sp. No. AH-101. Biosci Biotechnol Biochem, 56, 1667-1669
    255. Jacobson J W, Glick J L, Madello K L. Composition for cleaning drains clogged with deposits containing hairs. US Patent 4,540,506
    256. Fujiwara N, Tsumiya T, Katada T et al. Continuous recovery of silver from used X-ray films using a proteolytic enzyme. Process Biochem, 24, 155-156
    257. Ishikawa H, Ishimi K, Sugiura M et al. Kinetics and mechanism of enzymatic hydrolysis of gelatin layers of X-ray film and release of silver particles. J Ferment Bioeng, 76, 300-305
    
    
    258. Fujiwara N, Yamamoto K, Masui A. Utilization of a hermostable alkaline protease from an alkalophilic thermophile for the recovery of silver from used X-ray film. J Ferment Bioeng, 72, 306-308
    259. Gajju H, Bhalla T C, Agarwal H O. Thermostable alkaline protease from thermophilic Bacillus coagulans PB-77. Indian J Microbiol, 36, 153-155
    260. Kudrya V A, Simonenko I A. Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Appl Microbiol Biotechnol, 41,505-509
    261. Kim W, Choi K, Kim Y et al. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from chungkook-jangs. Appl Environ Microbiol, 62, 2482-2488
    262.刘大力,肖昌松,周培瑾.南极长城站微生物区系调查.生物多样性,2(2),76~81
    263.赵晶,张锐,林念炜,曾润颖.深海沉积物中微量DNA的提取及应用.海洋与湖沼,(已接受)
    264. Barns S M, Fundyga R E, Jeffries M W et al. Remarkable archaeal diversity detected in Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA, 91, 1609~1613
    265. Revenschlag K, Sahm K, Pernthaler J et al. ttigh bacteria diversity in permanently cold marine sediments. Applied and Environmental Microbiology, 65(9), 3982~3989
    266. O'Sullivan L A, Weightman A J, Fry J C. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in river Taff epilithon. Appl Environ Microbiol, 68, 201~210
    267. Rosselló-Mora R, Thamdrup B, Schaefer H et al. The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst Appl Microbiol, 22, 237~248
    268.李广武,郑从义,唐兵.低温生物学,长沙,湖南科学技术出版社
    269.邱秀宝,程秀兰.短小芽孢杆菌碱性蛋白酶的提纯和性质的研究.微生物学报,24(1),66-73
    270.孙钒,刘娥英,张用梅.球形芽孢杆菌C3-41菌株胞外蛋白酶特性.微生物学报,37(5),397-400
    271. Tomohiro K, Yasushi H. Determination of abundance and biovolume of bacteria in sediments by dual staining with 4', 6'-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics. Applied and Enviromnental Microbiology, 65(8), 3407-3412
    272. Murray A E, Preston C M, Massana R et al. Seasonal and spatial yariability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology, 64(7), 2585~2595
    273. Bruni V, Gugliandolo C, Maugeri T et al. Psychrotrophic bacteria from a coastal station in the Ross sea (Terra Nova Bay, Antarctica). New Microbiol, 22(4), 357~363
    274. Bowman J P, Rea S M, McCammon S A et al. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environ Microbiol, 2(2), 227~237
    275. Karl D M, Bird D F, Bjorkman K el al. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science,286(5447), 2144~2147
    276. Gosink J J, Staley J T. Biodiversity of gas Vacuolate bacteria from Antarctic sea ice and water. Applied and Environmental Microbiology, 61 (9), 3486~3489
    277. McFeters G A, Barry J P, Howington J P. Distribution of enteric bacteria in Antarctic seawater surrounding a sewage outfall. Water Res, 27(4), 645~50
    278. Stackebrandt E, Goebel B M. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, Int J Syst Bacteriol, 44. 846~849
    
    
    279. Clarke A. A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biological Journal of the Linnean Society, 14, 77-92
    280. Clarke A. Lipid content and composition of Antarctic krill, Euphausia superba Dana. Journal of Crustacean Biology, 4, 285-294
    281.陈杰,Blume H P.人类活动对南极陆地生态系统的影响.极地研究,12(1),61~73
    282.赵烨,李容全.南极菲尔德斯半岛苔藓泥炭层~(14)C测年.科学通报,44(12),1342~1344
    283.王将克,陈水挟,钟明月等。氨基酸生物地球化学,北京,科学出版社,78-80