界面微观特性的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要目的是利用分子动力学模拟方法(Molecular Dynamic Simulation,简称MD)从微观上系统地研究相变及界面现象。
     相变是工程中常见的物理现象,相界面是不同相间的边界面。由于界面非常薄,在许多场合下仅有几个分子直径厚,因而常被忽略而将其想像为一个没有厚度的几何面。但正是这一薄薄的界面的存在,对界面区的热力学特性及其附近的流动和输运、化学过程产生了重要的影响。近几年来,国内外对界面性质及相间输运现象的研究非常活跃,界面现象的探索长期以来都是科学研究的一个重点领域
     本论文借助分子动力学模拟方法,从微尺度上全面系统地研究界面层的物理特性和流体宏观特性与微观特性之间的关系,找出了宏观现象对应的微观图象,使我们能更好地把握现象的本质,以丰富理论、指导实践。
     本论文所作的主要工作如下:
     ①详细阐述了分子动力学模拟的原理和关键技术,构造了分子动力学模拟方法的计算程序。以LJ流体氩、甲烷和强极性物质水为例,计算了流体的饱和特性,确定了饱和压力与温度的相互关系。并通过与实际气体状态方程的计算结果及相应的实验值进行了比较,证明了分子动力学模拟方法在模拟气体物性上是成功的,并对现有实际气体状态的正确性利用MD方法进行了对比、验证。另外,运用曾丹苓教授提出的用分数布朗函数作为描写实际流体分子无规则运动的概率密度函数的理论,获取了分子动力学模拟中大量的分子运动的微观信息,定量描述了实际气体偏离理想气体的程度。
     ②用MD方法研究了气-液相平衡。发现此时除气、液两相外,还存在一个各向异性的界面相。本文仔细地研究了界面相中流体粒子的数密度分布、温度分布及法向切向应力分布,计算了表面张力。在气-液界面特性的分子动力学模拟方法研究中,由于界面层存在各向异性,本文特别分析了势能截断半径的选取对均匀相中饱和气体和饱和液体的密度以及非均匀相中表面张力的影响,提出了一种能够同时满足均匀相中饱和气体、饱和液体密度和非均匀相中表面张力计算要求的截断半径选取方法-变截断半径算法。此算法克服了传统模拟方法中统一的截断半径不可能同时满足均匀相中和非均匀相中相关参数的计算精度要求的缺点,提高了计算精度,节约了计算时间;并将该算法运用在分子动力学模拟中,进一步分析了涨落现象对非均匀相的影响。
     ③在相变过程界面现象的研究中,本论文从平界面的相平衡发展到球界面的相平衡研究,从微观尺度上分析研究了纳米液滴蒸发、冷却凝固的微观过程。以径向分布函数理论为基础,更为详细地探究了纳米液滴在蒸发和冷却凝固过程中界面现象及过程的微观机制。并从微尺度液滴的模拟中获取了相应的宏观性质,这将为探索宏观系统尚未知或未确定的物理性质打下基础。
     ④本论文研究了分子动力学模拟中固壁对流体分子的影响。在固-液界面特性的分子动力学模拟研究中,本文提出了修正的半经验固-液分子作用势函数,引入了固-液分子作用力耦合参数α和β,分析了耦合参数α和β对作用势函数的影响;建立了固体壁面对液体分子作用的数学模型;发现在紧靠壁面处存在一个兼有固体和液体特征的一层,我们称之为“拟有序层”。本论文研究了固体和液体不同的物性参数对固体近表面流体拟有序层的影响,进而研究了拟有序层中的分子排布、分子双体分布函数及分子的运动特征,为研究相关现象提供了必要的微观分析基础。最后,结合工程需要研究了由两个固壁构成的纳米通道中受限流体的特性、输运和流动行为并与其相应的宏观特性进行了比较。文中绘出了窄通道内分子排布规律,双体分布函数的变化,分子运动情况的空间轨迹及时间谱分析,得到一些具有鲜明物理意义的有趣的结论。为研究窄通道内物质的特殊行为例如其所表现的尺度效应等提供了依据,在此基础上本文还研究了窄通道内的输运系数(扩散系数),并以其间的泊松流为例,研究了纳米通道内的流动特性,绘出了微通道中的泊松流的速度分布,可以明显地看出在微尺度下N-S方程将不再适用。这不仅在理论上表明了流体宏观特性及微观特性之间的差异,也为实际工程运用提供了依据。
The main purpose of the present dissertation is to systematically study the interfacial phenomena and phase transition in microscopic level by means of molecular dynamics simulation (MDS).
     It is well known that phase transition is a physical phenomenon which appears frequently in engineering and the interface is a face between different phases. Generally speaking, the thickness of the interface is about several diameters of a molecule. The interface is so thin that it could be considered as a geometric surface without thickness. But this thin interface has an important influence on flow, transport properties and chemical process of the fluids nearby it. In recent years, there are many researches on properties of the interface and transportation phenomena among phases. The exploration of the interfacial phenomena is a remarkable field of scientific study for a long time. By using molecular dynamics simulation, the relation between the microscopic properties and the macroscopic properties of a system is investigated on the microscopic scale. The microscopic picture of macroscopic phenomenon is clearly unfolded. It makes a better grasp of the essence of a phenomenon, so that to enrich the theory and direct the practice.
     The main contributions of the present dissertation are as follows:
     ①The saturated properties of fluids were calculated to determine the correlation between saturated temperature and saturated pressure. In which, argon, methane and water with strong polarity were chosen as the working substances. Then, the simulated results were compared with the calculated data by using the state equation of real gases and the corresponding experimental values. It was proved that the molecular dynamics simulation method was very successful and efficient for real gas to determine its properties. Meanwhile, the validity of the existing state equations of real gas was contrasted and verified using MD. In addition, the microscopic information was withdrawn during the simulation according to the theory proposed by Prof. Danling Zeng, in which the fractional Brownian function was adopted to describe the probability density function of the molecule’s random motion. This could be indicated quantitively the derivation degree of a perfect gas from a real gas.
     ②The phase equilibrium between two phases of liquid and vapor were performed by MD. It is found that except bulk liquid and bulk vapor, there exists an anisotropic interfacial phase. In this section, the profiles of number density, temperature, normal and tangential pressure tensors were studied in detailed for the fluids in the interfacial phase. Because of the anisotropic characteristics in the interface, the effect of the potential cutoff radius was estimated particularly on the densities of saturated vapor and saturated liquid in the homogenous phases and on the surface tension in heterogeneous phase. Then, the new algorithm of choosing the cutoff radius, so called“variable cutoff radius method”, was proposed, which satisfies both the calculation of the densities of saturated vapor and saturated liquid in the homogenous phase as well as the surface tension in heterogeneous phase, so as to overcome the disadvantages of the uniform cutoff radius and increase the calculation precision. Furthermore, the influence of fluctuation phenomena on heterogeneous phase was investigated by the new method proposed.
     ③From the plane interface extended to spherical one, the microscopic process of the evaporation and solidification for liquid droplets was analyzed and investigated on the basis of the theory of radial distribution functions. So that the mechanisms of interface phenomena in the phase transition would be explored in detail. Then the corresponding macroscopic properties were derived during the simulation of microscale liquid droplets, which will lay a solid foundation for predicting the unknown or undetermined properties of macroscopic system.
     ④The effect of solid wall on the fluid molecules was investigated by MD. In the study of interfacial properties of solid-liquid system, a modified and semi-experimental potential function was brought out in the dissertation. In which, two parameters coupling the intermolecular force were introduced. Firstly, the effect of coupling parameters on the interaction potential function was analyzed. Moreover, the mathematical model was established for the interaction between solid wall and liquid molecules. It is found that there exists a layer with properties of both bulk solid and bulk liquid at the same time in the vicinity of the solid wall, named“quasi-ordered layer”by us. In the dissertation, the effect of physical parameters of liquid and solid, respectively, on the quasi-ordered liquid layer was investigated. In addition, the distribution of molecules, the motion of a molecule and pair distribution functions in the quasi-ordered layer were shown in the paper, respectively, which provided a necessary basis of microscopical analysis for the corresponding research. In order to make a whole sight into the properties of fluids constrained in the micro and nanochannel, the transport properties of fluids and Poiseuille flow in a nanochannel were investigated and compared with the corresponding macroscopic properties. In the paper, the distribution of molecules, the change of pair distribution functions, the motion of molecules and its trace images and frequency spectrum chart for fluid constrained in the nanochannel were investigated in detail. Some interesting and significant results were obtained, which provided the basis for studying the properties of the fluids in a nanochannel and investigating the special properties, such as the size effect etc.. Based on the foregoing study, the transport coefficient (diffusivity) of fluids in the nanochannel and the velocity profiles were plotted for the Poeseuille flow. It was seen evidently that the simulated results under some conditions would deviated from the N-S solution. On one hand it shows that there exists the unnegligible difference of fluid properties between microscopic and macroscopic scale from the viewpoint of theory, on the other hand it could provided some references for the practical applications.
引文
[1] Richard J . Sadus , Molecular Simulation of Fluids—Theory, Algorithms and Object-orientation[M],Australia,1999.
    [2] Andersen,H.C. Molecular dynamics simulations at constant pressure and / or temperature.J.Chem.Phys.[J],1 980,6:2384-2393.
    [3] Andrij, T. and Jose, A. Computer simulations of liquid/vapor interface in Lennard -Jones fluids: Some questions and answers. J. Chem. Phys. [J], 1999, 18: 8510-8523.
    [4] Jian—Gang Weng,Seungho Park etc.Molecular dynamics investigation of thickness effect onliquid films.Journal of Chemical Physics.[J],2000.113:5917—5923.
    [5] J.R.Lukes, C.L.Tien etc. Molecular dynamics study of solid thin-film thermal conductivity.Journal of Heat Tansfer [J]2000.122:536.543.
    [6] Jianwei Che.Tahir Cagin etc.Thermal conductivity of diamond and related materials from molecular dynamics simulations.Journal ofchemical physics [J].2000.1 13:6888-6900.
    [7] A.J.H.McGaughe, N M.Kaviany.Theramal concuctivity decomposition and analysis using molecular dynamics simulations.Part I.Lennard-Jones argon.International Journal of Heat and Mass Transfer [J].2004.47:l783.1798.
    [8]刘静.微米/纳米尺度传热学[M].北京.科学出版社.2001.
    [9]米勒尔,尼奥基.杨承志,金静芷,曾利容译.界面现象—平衡和动态效应[M],北京:石油工业出版社, 1992.
    [10] Toxvaerd, S. and Stecki, J. Molecular dynamics of interfaces in opposing fields. J. Chem. Phys.[J],2001, 4: 1928-1934.
    [11] Scott, W. S., Gary, S. G., and Martin, D. L. Capillary wave at liquid-vapor interfaces: Amolecular dynamics simulation. Physical Review E[J], 1999, 6: 6708-6713.
    [12] Chun, Y., Min, C. and Zengyuan, G. Molecular dynamics simulation on interface characteristics of micro droplets[J]. Chinese Physics Letters[J],1999, 11: 803-804.
    [13] Cheung, P. S. Y. and Powles, J. G. The properties of liquid nitrogen. IV. A computer simulation.Mol. Phys. [J], 1975, 2: 921-949.
    [14] Goujon,F., Malfreyt, P., Boutin, A. and Fuchs, A. H. Direct Monte Carlo simulations of the equilibrium properties of n-pentane liquid–vapor interface. J. Chem. Phys. [J], 2002, 18:8106-8117.
    [15] Andre′s, A., W. Scott and Paul, A. M. Molecular dynamics simulations of the liquid–vapor interface of a molten salt. II. Finite size effects and comparison to experiment. J. Chem. Phys.[J], 2001, 18: 8612-8619.
    [16]张福田.分子界面化学基础[M].上海.上海科学技术文献出版社.2006.
    [17] Atkin.P, Paula de J, Atkins Physical Chemistry, Seventh Edition[M], London: Oxford University Press, 2002, 758.
    [18] Hiemenz P., Rajagopalan R., Principles of colloid and surface chemistry[M], Third Edition New York: Marcel Pekker Inc, 1997.
    [19] Guggenheim EA. Modern Thermodynamics by the J. Willard Gibbs[M], London: Methuen & Co.Ltd., 1933.
    [20] Guggenheim EA. Trans Faraday Soc.[A], 1940,36,397.
    [21] Adamson A.W., Physical Chemistry of surface[M], 3th Ed, New York: John Wiley, 1976.
    [22] Adamson A.W and Gast A P, Physical Chemistry of surface[M], 6th Ed, New York: John Wiley, 1997, 225.
    [23]张福田.化学学报[J]. 1986:44,1-9.
    [24]张福田.Journal of Colloid and interface science[J], 2001, 244, 271-281.
    [25]朱步瑶,赵振国.界面化学基础[M],北京:科学出版社,2003.
    [26] Spraching M.T. , Liquids and solids[M], Riutledge & Kegan Panel, London, 1985,169.
    [27] J.A.Barker, et al, Liquid argon:Monter Carlo and Molecular Dynamics Calculations, Molecular Physics[J],21,1971,PP.657-673.
    [28] S. Fujikawa, Molecular study of phase transition phenomena of fluid, Thermal Science and Engineering [J], 3, 1995, pp45-50.
    [29] M. Maddox, et al, Molecular simulation of simple fluids and water in porous carbons, Fluid Phase Equilibria[J], 104, 1995,pp145-158.
    [30] Metropolis. N., et al, Equation of state by fast computing machines, J. Chem. Phys. [J] , 21, 1953, pp1087-1092.
    [31] B. J. Alder, T. E. Wainwright, Phase transition for a hard sphere system, Journal of Chemical Physics[J], 27, 1 957, pp1208-1209.
    [32] Gosling, E. M., McDonald, I. R. and Singer, K. On the calculation by molecular dynamics of the shear viscosity of a simple fluid. Mol. Phys. [J], 1973, 4: pp1475-1484.
    [33] Gillan, M. J. and Dixon, M. The calculation of thermal conductivities by perturbed molecular dynamics simulation. J. Phys. C[J], 1983, 2: 869-878.
    [34] Todd B. D. and Peter J. D. The stability of nonequilibrium molecular dynamics simulations of elongational flows. J. Chem. Phys. [J], 2000, 1: 40-46.
    [35] Luzheng, Z., Ramkumar, B., Stevin, H. G. and Shaoyi, J. Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk. J. Chem. Phys. [J], 2001,15: 6869-6877.
    [36] W. T. Ashurst and W. G Hoover, Argon shear viscosity via a Lennard-Jones potential with equilibrium and non-equilibrium molecular dynamics, Phys. Rev. Lett. [J], 31,1973, pp206-208.
    [37] W. T. Ashurst and W. G Hoover, Non-equilibrium molecular dynamics:shear viscosity and thermal conductivity,Bull.Am. Phys. Soc. [J], 17, 1972, pp1196.
    [38] W.G Hoover,W.T.Ashurst,Non-equilibrium molecular dynamics.In theoretical chemistry[A], Advances and perspectives(ed. H.Eyring and D.Henderson),1,1975, pp1-51.
    [39] W.T-Ashurst and W.G Hoover, Dense fluid shear viscosity via non-equilibrium molecular dynamics, Phys.Rev.A[J],11, 1975, pp658-678.
    [40] W.T. Ashurst and W.G Hoover,Shear viscosity via periodic non-equilibrium molecular dynamics,Phys.Lett.A, [J], 61, 1977, pp175-177.
    [41] B.Hafskjold, Molecular Dynamics Simulation of coupled heat and mass transport and phase equlibria, Fluid Phase Equilibrium[J],in Press.
    [42]田长霖,JohnH.L顾毓沁,过增元译.统计热力学[M].北京:清华大学出版社,1987.
    [43] Prausnitz J M, Lichtenthaler R N , and Edmundo Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria[M]. Second Edition, Englewood Cliffs: Prentice-Hall Inc., 1986.
    [44]王诚泰.统计物理学[M].北京:清华大学出版社, 1991.
    [45]周上章.统计物理学[M].重庆:重庆大学出版社, 1989.
    [46] Wilde R. E. and Singh S., Statistical Mechanics, Foundamtntals and Modern Applications[M], New York: John Wiley & Sons. Inc. 1997.
    [47]薛增泉编著.热力学与统计物理[M],北京大学出版社,1995.
    [48]王光信,刘澄凡,张积树编,物理化学[M].第二版,北京:化学工业出版社,2002.
    [49] Panagiotopoulos, A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. [J], 1987, 2: 813-826.
    [50] Panagiotopoulos, A. Z., Quirke, N., Stapleton, M. and Tildesley, D. J. Phase equilibria by simulation in the Gibbs ensemble. Alternative derivation, generalization and application to mixture and membrane equilibria. Mol. Phys. [J], 1988, 2: 527-546.
    [51] Viktor,V Z., Elena, N.B.and Aatto, L. Surface tension of water droplets: A molecular dynamics study of model and size dependencies. J. Chem. Phys. [J], 24, 1997, PP.10675-10683.
    [52] Kotake S., Aoki X., Atomic and molecular clusters and their film condensation, in: ICHMT Symposium Proceedings on Molecular and MJcroscale Heat Transfer in MaterialProcessing and other Applications[J], 1994, pp. 118-129.
    [53] Rey C., Gallego L.J., Iniguez M.P., Alonso J.A., A molecular dynamics study of the evaporation of small argon clusters, Physica B[J], 179(1992) 273-277.
    [54] Wakuri S., Kotake S., Molecular dynamics study of the heat conduction in very thin films[C], ASME/JSME Thermal Engeering Proceedings 4(1991) 111-116.
    [55] Powles J.G., Fowler R.F., Evans W.A.B., A new method for computing surface tension using a drop of liquid, Chem. Phys. Lett[J]. 98(1983) 421-426.
    [56] A.P.Bhansali, Y. Bayazitoglu, S.Maruama., Molecular Dynamics Simulation of an evaporating sodium droplet. Int. J. Therm. Sci[J]. 1999, 38, 66-74.
    [57] Thomopson S.M., Gubbins K.E., Walton J.P.R.B., Chantry R.A.R., Rowlinson J.S., A molecular dynamics study of liquid drops, J. Chem. Phys. [J], 81(1) (1984) 522-530.
    [58] Yasuoka K., Matsumoto M., Kataoka Y., Evaporation and condensation at a liquid surface. I. Argon, J.Chem. Phys. [J], 101, 1994, 7904-7911.
    [59] Matsumoto M., Yasuoka K., Kataoka Y., Micro-scopic Features of Evaporation and Condensation at Liquid Surfaces:Molecular Dynamics Simulation[J], 1994, Vol. 2,No. 1, pp. 1-6.
    [60] Yasuoka K, Matsumoto M, Molecular Dynamics Simulation of Homogeneous Nucleation in Supersaturated Water Vapor Fluid Phase Equillibrium[J], 144, 1998, pp369-376.
    [61] Dang L X., Chang T M., Molecular Dynamics Study of Water Cluster, Liquid and Liquid-vapor Interface of Water Many-body Potential, Journal of Chemical Physics[J], 1997, 106, 19,pp149-8159.
    [62]熊大曦,徐步生,过增元.平衡系统的热力学参数和输运参数的分子动力学模拟,北京市工程热物理学会青年学术会议[C],北京,1995,1(1)P108-117.
    [63]熊大曦,过增元,李志信.相变现象的分子动力学研究[C],中国工程热物理学会论文集,重庆,1997,P75-81.
    [64]熊大曦.某些热现象的分子动力学研究[D],北京,清华大学博士论文,1998.
    [65]王遵敬,陈民,过增元.汽液界面动力学行为与热力学性质的分子动力学研究[J],工程热物理学报,2001年1月,第22卷,第1期,P70-73.
    [66]王遵敬.蒸发与凝结现象的分子动力学研究及实验[D],北京,清华大学博士论文,2002.
    [67]熊建银,陶文铨,何雅玲.气液界面特性和凝结过程的分子动力学研究[C],中国工程热物理学会论文集,北京,2005,P146-150.
    [68]孙杰,何雅玲等.外力场对气固凝结现象的模拟研究[C],中国工程热物理学会论文集,重庆,2006,P111-116.
    [69]刘娟芳,流体输运特性及物态转变的分子动力学研究[D],重庆大学博士论文,2005.
    [70]刘娟芳,曾丹苓.扩散系数的分子动力学模拟[J],工程热物理学报,2006年第27卷第3期,pp.373-375.
    [71] G.A.Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson, J. Chem. Soc., FaradayTrans. [J], 2 73, 1133 (1977).
    [72] M. J. P. Nijmeijer, A. F. Bakker, C. Bruin and J. H. Sikkenk, J. Chem. Phys. [J], 89, 3789 (1988).
    [73] H. Daiguji and E. Hihara, Heat and Mass Transfer[J], 35.213 (1999) .
    [74] M. Mecke, J. Winkelmann, and J. Fischer, J. Chem. Phys. [J], 107, 9264 (1997).
    [75] G. A. Chapela, S. E. Martinez-Gasas,And C. Varea, J. Chem. Phys. [J], 86, 5683 (1987).
    [76] J.P.B.Walton, D.J.Tildesley, and J.S.Rowlinson, Mol. Phys. [J], 48, 1357(1983).
    [77] J.G.Kirkwood and F.P.Buff, J. Chem. Phys. [J], 17, 338(1949).
    [78] S. Ono and S. Kondo, Encylopedia of Physics[M], edited by S. Flugge (Springer, Berlin, 1960), Vol.10.
    [79] Metthias, M., Jochen, W. and Johann, F. Molecular dynamics simulation of the liquid-vapor interface: Binary mixtures of Lennard-Jones fluids. J. Chem. Phys. [J], 1999, 2: pp1188-1194.
    [80]王德明.应用分形理论及分子动力学模拟方法对气液界面现象的研究[D],重庆大学博士论文,2004.
    [81] Edmund B. Webb III, Gary S.Grest. Interfaces between silicon surfaces and liquid hexadecane:a molecular dynamics simulation. Journal of chemical physics[J],2002.116, pp6311-6321.
    [82] Peter A. Thompson, Mark O. Robbins.Shear flow near solids:Epitaxial order and flow boundary conditions. Physical review A[J], 1990.41: pp6830-6837.
    [83] Thompson P A, Trojan S M. A general boundary condition for liquid flow at solid surfaces. Nature[J], 1997, 389: pp360~362.
    [84] Sergei Shenogin, Liping Xue etc. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, Journal of Applied Physics[J], 95(12), 2004, pp. 8136-8144 .
    [85] D.K.Dysthe, A.H.Fuchs etc. Fluid transport properties by equilibrium molecular dynamics.I.methodology at extreme fluid states. Journal of Chemical Physics[J], 1999. 110, pp4047-4059.
    [86] D.K.Dysthe, A.H. Fuchs etc. Fluid transport properties by equilibrium molecular dynamics.II. Multi-component systems.Journal of Chemical Physics[J], 1999. 110: pp4060-4067.
    [87] L.Xue, R Kellinski.Two regimes of thermal resistance at a liquid-solid interface [J],2003.118:pp337-339.
    [88] L.Xue, R Keblinski etc. Effect of liquid layering at the liquid-solid interface on thermal transport. International Journal of Heat and Mass Transfer[J].2004.47: pp4277-4284.
    [89] Din X-D, Michaelides E E. Kinetic theory and molecular dynamics simulations of microscopic flows. Phys. Fluids[J],1997, 9 (12) : pp3915~3925.
    [90] Pozhar L A. Structure and dynamics of nanofiuids: Theoryand simulations to calculate viscosity.Phys. Rev. E[J], 2000,61 (2) : pp1432~1466.
    [91] Somers S A, Davis H T Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J Chem. Phys. [J], 1992, 96 (7) : pp5389~5407.
    [92] Bitsanis I, Magda J J, Tirrell M, et al. Molecular dynamics of flow in micropores. J Chem. Phys. [J], 1987, 87(3) pp1733~1750.
    [93] Bitsanis I, Somers S A, Davis H T, et at. Microscopic dynamics of flow in molecularly narrow pores. J Chem. Phys. [J], 1990, 93 (5) pp3427~3431.
    [94] Wang J-C, Fichthom K A. Influence of molecular structure on the properties of confined fluids by molecular dynamics simulation. Coloids and Surfaces A[J], 2002, 206:267~276.
    [95] Magda J J, Tirrell M, Davis H T. Molecular dynamics of narrow, liquid-filled pore. J Chem. Phys. [J], 1985, 83 (4) :pp1888~1901.
    [96] Schoen M, Cushman J H, Diestler D J, et al. Fluid in micropores. II. Self-diffusion in a simple classical fluid in a slit pore. J Chem. Phys. [J], 1988, 88 (2) pp1394~1406.
    [97]曹炳阳,陈民,过增元.纳米通道滑移流动的分子动力学研究[J],工程热物理学报,2003,24 (4) pp670~672.
    [98] Zhang H, Zhang B J, Liang S Q, et al. Shear viscosity of simple fluids in porous media molecular dynamic simulations and correlation models. Chem. Phys. Lett.[J],2001,350 pp247~251.
    [99] Davis H T. Kinetic theory of inhomogeneous fluid: Tracer diffusion. J Chem. Phys.[J], 1987, 86(3)pp1474~1477.
    [100]胡英编.流体的分子热力学[M],高等教育出版社,1982 .
    [101] S.查普曼T.G.考林著.刘大有等译.非均匀气体的数学理论[M],科学出版社,1985.
    [102]苏长荪,谭连城,刘桂玉.高等工程热力学[M],高等教育出版社,1987.
    [103]石小燕,曾丹苓,蔡治勇.不同Lennard--Jones模型参数对分子动力学模拟的影响[J],热科学与技术,4卷3期,ppl95—198.
    [104]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展, 2003, 1: 65-73.
    [105] Rapaport D C. The Art of Molecular Dynamics Simulation[M].Cambridge University Press,Cambridge,1998.
    [106] K. H. Hoffmann, M. Schreiber, Computation Physics [M], Berlin Heidelberg: Springer-Verlag, 1996, pp368-326.
    [107] H. J. C. Berendsen, J. P. M. Postma, et al, Molecular dynamics with coupling to an external bath, Joumal of Chemical Physics[J], 81, 1984, pp3684-3690.
    [108] W. G Hoover, Computation Statistical Mechanics[M], New York:Elsenieer, 1991, pp121-128.
    [109] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. [J], 81, 1984, pp5-11.
    [110] W.G Hoover, Canonical dynamics Equilibrium phase-space distributions,Physical Reviews A[J],3 1, 1 985, PP.1695-1702.
    [111] L.Verlet, Computer“experiments”on classical fluids, I. Thermodynamical properties of Lennard-Jones molecules, Physical Review A, 159, 1 967, PP.98-103.
    [112] R.W.Honeycutt, The potential calculation and some applications, Methods in Computational Physics[J], 9, 1970, PP.136-211.
    [113] Cook G A. (ed.) Argon, Heium, and The Rare Gases[M], Vol.1. New York: Interscience Publishers Inc.,1961.
    [114]任泽霈主编.热工手册[M],机械工业出版社,2001年.
    [115] Berendsen H J C, Postma J P M, Gunsteren W F, et al, Intermolecular Forcess[M], Reidel: Dordrecht, 1981, pp331-356.
    [116] Jorgensen W L, Chandrasekhar J, Comparison of Simple Potential Functions for Simulating
    [117] Jorgensen W L, Transferable Intermolecular Potential Functions for Water, Alcohols and Esters. Application to Liquid Water[J], J A C S, 103, 198l, pp33.
    [118]曾丹苓等编.工程热力学[M],高等教育出版社,1986.
    [119] Falconeq K. J., The Geometry of Fractal sets[M], Cambridge Univ. Press, Cambridge, 198 6, pp145-149.
    [120]谢和平,张永平,宋晓秋等(编译).分形几何一数学基础及应用[M],重庆大学出版社,重庆,1994,pp159-166.
    [121]王东生,曹磊.混沌,分形及其应用[M],中国科技大学出版社,合肥,1995,pp257-258.
    [122]蔡治勇,曾丹苓,刘娟芳.分子动力学模拟中的变截断半径算法[J],工程热物理学报,第27卷4期,pp556—558.
    [123]蔡治勇,曾丹苓,刘娟芳.分子动力学模拟中涨落对界面特性的影响[J],重庆大学学报(自然科学版),第30卷1期,pp54-57.
    [124] Sanjib S. A molecular dynamics simulation study of the dimethyl sulfoxide liquid–vaporinterface. J. Chem. Phys. [J], 2002, 4: 1812-1816.
    [125] R. H. Perry,化学工程手册[M],上卷,化学工业出版社,1992.
    [126] Tsi D.H., The virial theorem and stress calculation in molecular dynamics, J. Chem. Phys. [J], 70 (1979) 1375.
    [127] S.H.Park, J.G.Weng, C.L.Tien, A molecular dynamics simulation study on tension of microbubbles. International Journal of Heat and Mass Transfer [J], 44 (2001) 1849-1856.
    [128] E.M.Yezdimer, A.A.Chialvo, P.T.Cummings, Examination of chain length effects on the solubility of alkanes in near-critical and supercritical aqueous solutions, J. Physs. Chem. B[J], 2001, 105, 841-847.
    [129] S. Matsumoto, S. Maruyama, H. Saruwatari, A molecular dynamics simulation of a liquid droplet on a solid surface[C], ASME/JSME Thermal Engineering Conference: Vol 2 ASME 1995, pp557-562.
    [130] M.P.Allen., D.J.Tlldesley., Computer simulation of liquids[M], Oxford, Clarendon Press,1987.