惠民凹陷中央隆起带沙三段储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井间储层非均质性是影响油气田勘探开发效果的重要控制因素,以储层预测为主要研究内容、对储层非均质性进行综合评价是精细油藏描述的核心内容之一。针对惠民凹陷油气勘探的实际情况,本论文综合应用专家决策模型、神经网络、分形几何、地质统计学及流动单元等多种理论、方法和技术,力图通过对临邑-商河结合部的基山砂岩体的精细储层预测研究,揭示做为惠民凹陷主力油气分布区的中央隆起带在沉积相空间分布、相控下的井间砂体连通性、储层参数分布、储层综合流动性能等方面的非均质性特征,为惠民凹陷及油田的勘探开发提供重要的技术支持。
     以地质统计学变异函数为工具,以砂砾岩厚度为区域化地质变量,研究获取了工区沉积砂体的物源来源、展布主轴方向、长宽厚的比值等空间规模信息;以岩心分析总结的沉积相模式为基础,从测井资料中提取了具有沉积地质意义的测井相表征参数,通过神经网络误差反传算法结合人工经验,给出了单井剖面沉积微相解释结果,并用数学模型对厚度、距离、垂向位置、方位及邻井相关性等各种影响专家决策的信息进行定量描述,创新性地建立了一种三维相模拟的专家决策数学模型和算法,经资料处理建立了三维相数据体,通过立体图、剖面图和水平切面图等对基山砂体沉积特征进行了综合分析;以三维相模拟数据体为基础,建立了砂体连通性判定算法;以岩心刻度测井方法建立了储层参数解释模型并进行了资料处理,通过重构相空间法和变尺度极差分析法分析了测井曲线及储层参数的分形结构特征,设计完成了以连续随机加法为主的井间参数分形预测算法、以迭代函数系为主的二维曲线、三维曲面分形构建算法,建立了参数预测数据体并进行了较详细的地质分析;在储层流动性能预测与评价研究中,创新性地提出了同时对储层进行流动单元细分和类型识别的“切片合并”方法,完成了单井剖面的流动单元解释,在此基础上创新性地提出了反映储层总体流动性能的“综合流动指数”,并把分形插值算法用于储层流动性能预测。同时,整个研究过程也是区域储层地质知识库的建立、利用和完善的过程。最后,利用这些研究成果对工区成藏条件、剩余油分布等进行了综合分析,对油田进一步的勘探开发提出了指导意见。
     论文成果提供了一种以测井资料为主要基础数据,以地层对比、三维相模拟和砂体连通性为宏观控制,以储层参数解释及井间分形预测、流动单元划分及综合流动性能评价为精细研究内容的储层预测研究思路和实用方法,为油藏非均质性研究提供了可以借鉴的方法。
Interwell reservoir heterogeneity was an important controlling factor affecting exploration and development. Comprehensive evaluation of reservoir heterogeneity, which takes reservoir prediction as the primary content, was one of the most important researching contents in reservoir description. In view of the rigor situation of hydrocarbon exploration in Huimin Depression, the paper try to reveal the characteristics of distribution of sedimentary facies, connectivity of sandbody, distribution of reservoir parameters and flowing property of the central uplift belt, the major oil and gas distributed area of Huimin Depression, by the detailed researching of reservoir prediction of Jishan Sandbody. Many theories, methods or technologies such as the specialist decision model, artificial neural network, fractal geometry, geostatistics and flow-unit theory, and so on were used in the researching. And this was believed to be great technical support for exploration and development of Huimin Depression.
     Many spatial information, such as the provenance,the sandbody’s major extension axis, the ratio of sandbody’s length, width and thickness were gained by regarding the thickness of sandstone as the regionalized geological variable and taking variogram as the main researching tool. Some parameters with geological meanings were extracted to characterize the facies model gained from drilling cores. Microfacies of all wells were acquired by incorporating the expertise and BP algorithm of ANN. On this basis, some factors that impact the specialist’s decision-making, such as thickness, distance, vertical position, azimuth and correlation of neighboring wells, were describe by quantitative mathematical models. A new innovative decision-making model and algorithm was developed and be used to construct the 3D data volume of facies simulation. And, some 3D and 2D figures were extracted from this data volume to analyse the sedimentary characteristics of Jishan Sandbody. Sandbody’s connectivity decision algorithm was set up based on the 3D facies data volume. By calibrating the logging data with core analysis, interpretation models for the reservoir parameters were established and used. It was proved that well logging curves and reservoir parameters matched the fractal structure through phase space reconstruction and rescaled range R/S analyses, so the paper designed and established a fractal interpolating algorithm by taking SRA as the key method, a restruction algorithm for 2D curves and 3D surfaces by taking IFS as the key tool. The data volume of predicted parameters was then set up and evaluated in the geological meanings. A new method named“slicing and merging”was proposed innovatively to perform reservoir subdividing and identifying simultaneously. This method was used in flow-unit interpreting, reservoir flowing property predicting and evaluating. A new parameter named Integrative Flowing Index (IFI) was originally proposed and used to characterize the integrative flowing property of reservoir. Also, interwell fractal interpolation algorithm was used to predict the reservoir flowing property. On the other hand, this prediction researching can also be regard as a processing of construction, application and improvement of regional geological knowledge library. Lastly, conditions of hydrocarbon reservoir-forming and distribution of remaining oil were analyzed based on above researching results. And this can be used to direct the oilfield’s exploration and development.
     This dissertation supply a good idea and practical research method for reservoir prediction, which mainly based on well logging data, macro-controlled by strata correlation, 3D microfacies simulation and sandbody connectivity, and take reservoir parameters interpreting and its interwell fractal predicting, flow units subdividing and evaluation of reservoir flowing property as the fine researching contents. This may be very useful for reference in reservoir heterogeneity study.
引文
[1] J.C.Van Wagoner, R.M. Mitchum, K.M. Campion, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops; concepts for high-resolution correlation of time and facies[J]. AAPG Methods in Exploration Series, 1990(7): 55
    [2] Haldorsen H.H.,Damsleth E. Stochastic Modeling[J]. JPT, 1990, 42(4): 404-412. SPE 20321, 21255, 21299
    [3]陈钢花,申辉林,雍世和.应用数理统计方法自动解释地层岩性及沉积微相[J].石油大学学报(自然科学版),1996, 20(4): 26-29
    [4]雍世和,文政.用Bayes判别法定量识别沉积微相[J].测井技术,1995, 19(1): 22-27
    [5]秦亚玲,计平,郑宇霞,等.神经网络自动识别沉积微相在胡状集油田的应用[J].断块油气田, 2001, 8(1): 10-12
    [6]唐为清,郭荣坤,王忠东,等.沉积微相测井资料神经网络判别方法研究[J].沉积学报,2001, 19(4): 581-585
    [7]李洪奇,张福明,邵才瑞,等.测井资料沉积微相人机联作解释软件[J].中国海上油气(地质),1996, 10(2): 128-131
    [8]邓寅生,张鸿升,许建国,等.利用灰色聚类判定沉积环境[J].沉积学报,1998, 16(3): 156-160
    [9]毛宁波,戴塔根,常德双,等.沉积旋回的地震时频特征、地震分形特征和地震灰色特征研究[J].石油地球物理勘探,2003, 38(增): 134-137
    [10]汪徐焱,游章隆.模糊专家系统在碳酸盐岩剖面测井沉积相判识中的实现[J].成都理工学院学报. 1998, 25(增): 60-66
    [11]张兴金,徐景祯.沉积相的模糊模式识别方法及其应用[J].石油学报,1994,15(2): 32-38
    [12]黄地龙,杨龙.人机联作沉积相解释系统程序设计探讨[J].成都理工学院学报,1995, 22(4): 102-108
    [13]王志章,石占中,等.现代油藏描述技术[M].北京:石油工业出版社,1999
    [14] Alabert F, Modot V. Stochastic models of reservoir heterogeneity: impact on connectivity and average permeabilities[A],1992,SPE 24893
    [15] Damslesh E, et al. A two-stages to chastic model applied to a North sea reservoir[J]. JPT, April 1992, 404-408. SPE 20605
    [16]吴胜和,武军昌,李恕军,等.安塞油田坪桥水平井区沉积微相三维建模研究[J].沉积学报,2003, 21(2): 266-271
    [17]武军昌,吴胜和,尹伟,等.黄骅坳陷港西开发区新近系明化镇组沉积微相三维建模[J].古地理学报,2002, 4(4): 39-46
    [18]胡向阳,熊琦华,吴胜和,等.标点过程随机模拟方法在沉积微相研究中的应用[J].石油大学学报(自然科学版),2002, 26(2): 19-22,30
    [19]吴胜和,刘英,范峥,等.应用地质和地震信息进行三维沉积微相随机建模[J].古地理学报, 2003, 5(4): 439-449
    [20]陈亮,黄述旺,赖泽武.应用截断高斯随机模拟法研究沉积微相[J].石油勘探与开发,1998, 25(6): 74-75,80
    [21]胡雪涛,李允.储层沉积微相的随机模拟及其对比研究[J].西南石油学院学报,2000, 22(1): 16-19
    [22]陈亮,黄述旺.应用截断高斯随机模拟法研究沉积微相[J].石油勘探与开发,1998, 25(6): 74-75,80
    [23]冯国庆,李允,林作华,等.应用序贯指示模拟方法模拟沉积微相[J].西南石油学院学报, 2001, 23(2): 1-4
    [24]李少华,张昌民,张尚锋,等.沉积微相控制下的储层物性参数建模[J].江汉石油学院学报,2003, 25(1): 24-26
    [25]周丽清,熊琦华,吴胜和.随机建模中相模型的优选验证原则[J].石油勘探与开发,2001, 28(1): 68-71
    [26]董伟,冯方.预测井间储集层参数的相控模型法[J].石油勘探与开发,2003, 30(1): 68-70
    [27]谭成仟,张建英,苏超,等.井间参数预测的相控神经网络模型[J].石油地球物理勘探,2002, 37(3): 254-257
    [28]林克湘,张昌民,屈平彦,等.青海油砂山分流河道砂体储层骨架模型[J].江汉石油学院学报,1994, 16(2): 8-14
    [29]雷卞军,张昌民,林克湘,等.定量储层沉积学是获取储层建模地质信息的重要途径──以青海省油砂山露头研究为例[J].石油实验地质,1998, 20(1): 61-67
    [30]司马立强,李香江,吴胜,等.测井地震结合储层横向预测技术及在川东地区的应用[J].天然气工业,1999, 19(5):32-35
    [31]金强,信荃麟,刘泽容,等.复杂地质条件下断块内储层参数预测[J].石油地球物理勘探,1995, 30(增刊2): 66-69,75
    [32]吴川,朱青奇,常炳章,等.利用地展模型正演技术进行井间储层横向预测[J].石油地球物理勘探,1998, 33(增刊2): 82-85
    [33]刘国明,董敏煜,苑书金,等.储层横向预测的多元地质统计方法[J].石油地球物理勘探,1999, 34(5):555-559
    [34]王晖.综合应用地震、地质和测井资料预测储层分布[J].中国海上油气(地质), 2001, 15(2): 135-140
    [35]郑军.地质、测井、地震联合反演在辽河海外河储层预测中的应用[J].江汉石油学院学报, 2003, 25(增): 18-19
    [36]印兴耀,杨风丽,吴国忱.神经网络在CB油田储层预测和储层厚度计算中的应用[J].石油大学学报(自然科学版),1998, 22(2): 17-20
    [37]李燕生,马玉书.神经网络模式识别技术在井间储层参数预测中的应用[J].石油大学学报(自然科学版),1998, 22(3): 102-104
    [38]李振玉,苏月琦,谢书琴.人工神经网络在复杂断块油气田储层预测中的应用[J].断块油气田,2001, 8(1): 41-42
    [39]熊艳,肖慈珣,包吉山.模糊神经网络用于储层预测[J].矿物岩石,1998, 18(增): 206-208
    [40]隋少强,张义杰,曹思远编著.储层特征研究与预测[M].北京:地质出版社,2003
    [41] Hewett T. A.. Fractal distribution of reservoir heterogeneity and their influeuce on fluid transport[A],1986,SPE 15386
    [42]田巨平,姚凯伦.沉积岩中的分形及其在石油勘探和开发中的应用[J].物理,1996, 25(3): 168-171
    [43] Hewett T.A., Behrens R.A.. Conditional simulation of reservoir heterogeneity with fractal[J]. SPE Formation Evaluation. 1990, 217-224. SPE 18326
    [44] A.S. Emanuel, G.K. Alameda, et.al.. Reservoir performance prediction methods based on fractal geostatistics[A]. 1989, SPE16971, SPE 20011, SPE20158
    [45] Crane, S.D. and Tubman, K.M.. Reservoir variability and modeling with fractals[A]. SPE 20606,1990
    [46] Aasum & Yngve, et al.. An application of geostatistics and fractal geometry for reservoir characterization[J]. SPE FE, March 1991, 11-19, SPE 20257
    [47]毛宁波,桂志先,朱广生.井间储层参数分形预测及其应用[J].江汉石油学院学报,1995, 17(2): 43-47
    [48]张占松,王冠贵,陈佩珍.井间非均质渗透率分形预测[J].石油勘探与开发, 1998, 25(1): 65-68
    [49]陈亮,熊琦华,纪发华.用正演井间分形克里格方法预测储集层的非均质性[J].石油勘探与开发,1998, 25(1): 62-64
    [50]李龙滟,陈恭洋,钟宝荣.用随机模拟方法对井间砂体预测[J].石油与天然气地质,1999, 20(2): 179-181
    [51]戴前伟,彭振斌,何继善.基于FBM的分形插值方法[J].中国有色金属学报,1998, 8(4): 719-722
    [52]练章贵,张绍槐,焦棣,等.分形插值在储层参数预测中的应用[J].西南石油学院学报,1998, 20(2): 16-18
    [53]谢和平,孙洪泉.分形插值曲面理论及其应用[J].应用数学和力学,1998, 19(4): 297-306
    [54]孙炜,陈锦昌.应用迭代函数系统获得分形图形的简易方法[J].工程图学学报,2001(3): 109-113
    [55]汪富泉,罗朝盛.基于迭代函数系统的分形算法及其应用[J].工程数学学报,2002, 19(2): 103-108
    [56]纪发华,张一伟.分形几何学在储层非均质性描述中的应用[J].石油大学学报(自然科学版),1994, 18(5): 161-167
    [57]方战杰,郭海敏,沈世波.分形在油藏动态参数预测中的应用[J].测井技术, 2001, 25(1):21-23
    [58]李越,段永刚,胡勇.井间储层参数分形预测及其应用[J].新疆石油学院学报,1997, 9(1): 40-45
    [59] Barr D.C., Altunbay M.. Identifying hydraulic units as an aid to quantifying depositional environments and diagenitic facies[C]. Geological Soc.of Malaysia Symp. on Reservoir Evaluation/Formation Damage. Kuala Lumpur, 1992: 61-73
    [60]袁彩萍,姚光庆,徐思煌,等.油气储层流动单元研究综述[J].地质科技情报,2006,25(4): 21-26
    [61] Rodriguez A., Maraven S.A.. Facies modeling and flow unit concepts as a sedimentological tool in reservoir description: A case study[A]. SPE 18154, 1988
    [62] Guangming Ti, et al.: Use of flow units as a tool for reservoir description: A case study[A]. 1995, SPE 26919
    [63] Kramers W. Integrated reservoir characterization: form the well to the numerical model, Increased Primary Recovery[C], 14th World Petroleum Conference. JohnWiley and Sons, 1994: 287-296
    [64] Sllseth J.K..流动单元油藏描述对模拟水驱动态的影响[J].李彦平译.石油勘探开发情报, 1994, 6(1): 82-90
    [65] Hamlim H.S., Dutton S.P., Seggie D., et al.. Depositional Controls on Reservoir Properties in a Braid-Delta Sandstone, Tirrawarra Oil Field. South Australia[J]. AAPG Bulletin,1996, 80(2):139-156
    [66] Hearn, C.L. et al. Geological factors influencing reservoir performance of the Hartzog Draw Filed, Wyoming[J], JPT , 1984, 1335 ; Trans., AIME, 277
    [67] Ebanks, W.J.. The flow unit concept - An integrated approach to reservoir description for engineering projects[A], Proc., AAPG Annual Convention, 1987
    [68] Slatt R.M. et al.. Scales of geological reservoir description for engineering applications: North Sea Oilfield example[J], JPT, 1990, 42(2): 200
    [69] Amaefule J.O. et al.. Enhanced reservoir description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C]. 68th ATCE, 1993, SPE 26436
    [70] Gunter G.W., et al.. Early determination of reservoir flow units using an integrated petrophysical method[A]. 1997, SPE 38679
    [71] Aminian K., Thomas B., Ameri S. et al.. A new approach for reservoir characterization[A]. 2002, SPE 78710
    [72] Aminian K., Ameri S., Oyerokun A., et al.. Prediction of flow units and permeability using artificial neural networks[A], 2003, SPE 83586
    [73] Englund E. and Sparks A.. GEO-EAS, U. S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory[A], EPA/600/4-88/033, 1988
    [74]王仁铎,胡光道.线性地质统计学[A].北京:地质出版社,1988
    [75]侯景儒,尹镇南,李维明,等.实用地质统计学[A].北京:地质出版社,1998
    [76]赵国忠,尹芝林.井间参数预测中的实用变异函数拟合方法[J].石油学报, 1998, 19(1): 75-78
    [77]王域辉,廖淑华.分形与石油[A].北京:石油工业出版社,1994
    [78]穆龙新,贾爱林,陈亮,等.储层精细研究方法—国内外露头储层和现代沉积及精细地质建模研究[M].北京:石油工业出版社,2000
    [79]操应长,姜在兴,李春华,等.山东惠民凹陷中央隆起带古近系沙三段层序地层及沉积演化[J].古地理学报,2002, 4(3): 40-46
    [80]杨剑萍,许正豪,姜在兴,等.山东惠民凹陷中央隆起带古近系沙河街组层序地层特征及控制因素研究[J].沉积学报,2003, 21(4): 670-674
    [81]张宇,邱桂强,李趁义,等.惠民凹陷沙河街组三段岩性油藏勘探方向[J].石油与天然气地质,2002, 23(2): 162-165
    [82]杨剑萍,操应长.惠民凹陷下第三系沙河街组基山砂体成因及石油地质意义[J].石油大学学报(自然科学版),1999, 23(4): 9-12
    [83]姜在兴,张勇,操应长,等.惠民凹陷中央隆起带西部沙三、沙四段沉积体系、储层展布及油气预测研究[Z],1998
    [84]胜利油田临盘采油厂地质研究所、中国地质大学临盘项目课题组.临邑洼陷油气资源综合评价与勘探潜力研究总结报告[Z],2000
    [85]孙焕泉,王端平,张善文.胜利油区勘探开发论文集(第三辑)[C],北京:地质出版社,2001
    [86]杨剑萍,陈发亮,姜在兴.陆相断陷湖盆层序地层模式及控制因素研究——以惠民凹陷下第三系沙河街组为例[J].煤田地质与勘探, 2003, 31(1): 1-4
    [87]于志钧.石油数学地质[A].北京:石油工业出版社,1985
    [88]王志章,熊琦华.油藏描述中的测井资料数据标准化方法和程序.测井技术,1994, 18(6): 402-407
    [89]王志章,熊琦华,宋杰英.枣园油田枣南孔二段测井资料数据标准化及应用[J].石油大学学报(自然科学版), 1994, 18(6): 26-29
    [90]雍世和,张超谟主编.测井数据处理与综合解释[M].北京:石油工业出版社,2004
    [91]洪有密.测井原理与综合解释[M].山东:中国石油大学出版社,1993: 305-307
    [92]内部资料:惠民凹陷油气成藏规律及勘探方向研究[Z],2005
    [93]王仁铎.利用测井曲线形态特征定量判别沉积相[J].地球科学—中国地质大学学报,1991,16(3): 303-309
    [94]陈恭洋.碎屑岩油气储层随机建模[A].北京:地质出版社,2000,169-170
    [95] OSCAR PALACIOS-VELEZ. A dynamic hierarchical subdivision algorithm for computing delaunay triangulations and other closest-point problems[J]. ACM Transactions on Mathematical Software. Vol.16. No.3. September, 275-292
    [96] Maghsood Abbaszadeh, et al.. Permeability prediction by hydraulic flow units– theory and application[A], 1996, SPE 30158
    [97] Alden J. Martin, et al.. Characterization of petrophysical flow units in carbonate reservoirs[J]. AAPG Bulletin, 1997, 81(5): 734-759
    [98]方开泰,潘恩沛.聚类分析[M].北京:地质出版社,1982
    [99]方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1989
    [100]李汉林,赵永军.石油数学地质[M].山东:石油大学出版社,1998
    [101]孙健评,徐学品,等.双河油田开发后期流动单元划分方法[J].新疆石油地质,1995, 20(2): 154-157
    [102]胡克珍,张超谟.测井资料计算机辅助地层对比[M].北京:石油工业出版社,1996
    [103]穆龙新,等.不同开发阶段的油藏描述技术和方法[A].中国石油天然气总公司会议材料[C],1996
    [104]裘亦楠,王振彪.油藏描述新技术[A],中国石油天然气总公司油气田开发会议文集[C],北京:石油工业出版社,1996: 62-72
    [105]赵澄林,张善文,袁静,等.胜利油区沉积储层与油气[A].北京:石油工业出版社,1999: 21-23
    [106]贾爱林.地质模型建立步骤[J].地学前缘,1995,2(3-4): 221-225
    [107]裘怿楠、贾爱林.储层地质模型10年[J].石油学报,2000,21(4): 101-104
    [108]潘葆芝,薛林福.分数维及其在测井地质解释中的应用[A].中国石油学会石油测井学会主编,测井在油藏描述中的应用[C].北京:石油工业出版社,1992
    [109]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23
    [110]乐友喜,王才经.多重分形在测井资料裂缝研究中的应用[J].石油物探, 1998, 37(1):109-114
    [111]张福明,李洪奇,邵才瑞,等.应用神经网络模式识别技术进行测井沉积学研究[J].石油勘探与开发,2003,30(3): 121-123
    [112]肖斌,赵鹏大,侯景儒.现代地质统计学的新进展[J].世界地质,1999,18(3): 81-87,91
    [113]熊琦华,陈亮,等.地质统计学在储层表征中的应用[J].断块油气田,1997,4(1): 21-28
    [114]王泽华,李庆.地质统计学方法在储层预测中的应用——以莫北油气田莫北9井区为例[J].新疆石油学院学报,2001,13(1): 26-30
    [115]宋春华,崇仁杰,程立芝.地质统计学储层建模技术在印尼马六甲AI和N油田的应用[J].中国海上油气(地质),2001,15(5):340-344,360
    [116]毕研斌,麻成斗,石红萍,等.变差函数在描述储集层平面非均质性中的应用[J].新疆石油地质,2003,24(3): 251-253
    [117]林幼斌,杨文凯.地质统计学研究现状及在我国的应用[J].云南财贸学院学报,2001,17(专): 26-30
    [118]陈新,王绪龙,靳涛.石油储量分布的分形特征及其预测[J].新疆地质, 2001, 19(4): 297-299,304
    [119]李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社, 1993
    [120] UNCERT软件网址[CP/OL], ftp://uncert.mines.edu/pub/wwingle/uncert/
    [121] Vis5d软件主页[CP/OL], http://www.ssec.wisc.edu/-billh/vis5d.html
    [122] Voss, R.F., Random Fractal Forgeries. Proceeding of the NATO A.S.I. Fund. Algorithms in Comp. Graphics[A], Ilkley, U.K., 1985
    [123] Aasum, Y., Kelker, M, G., and Guptar S. P.. An application of geostatistics and fractal geometry for reservoir characterization[J]. SPE Formation Evaluation (March 1991) 11-19
    [124] J.H. Fang, H.C. Chen, P.B.Visscher. Reservoir characterizationvia geostatistical and fractal simulations[J], 1992, SPE 025525
    [125] G. Pérez and A.K.Chopra. Evaluation of fractal models to describe reservoir heterogeneity and performance[J]. SPE Formation Evaluation, March 1997. SPE 22694
    [126] Dominique Berta, H.H. Hardy, and R.A. Beier. Fractal distributions of reservoir properties and their use in reservoir simulation[A]. 1994, SPE 28734
    [127]陈烨菲,彭仕宓,宋桂茹.流动单元的井间预测及剩余油分布规律研究[J].石油学报, 2003, 24(3): 74-78
    [128]谢俊,武英利,梁会珍,张万里.应用流动单元寻找油田有利挖潜区的新思路[J].西北地质, 2004, 37(4): 44-49
    [129]吴胜和,王仲林.陆相储层流动单元研究的新思路[J].沉积学报, 1999, 17 (2): 252-257
    [130]阎长辉,戴达山,陈青.流动单元法评价储层的展布特征[J].成都理工学院学报, 2002, 29(1): 37-40