海水脱硫电站燃煤过程中汞的形态转化与排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是一种剧毒、高挥发性、易在生物体内富集并导致病变的持久性环境污染物。由于原煤中含有汞,耗煤量巨大的燃煤电站成为环境中汞污染的最主要人为排放源。目前,燃煤电站汞排放特性及控制技术研究已成为各国研究的前沿及热点。
     本文以燃煤过程产生的汞污染物为对象,以配有完整烟气净化装置的大型滨海电站燃煤锅炉烟气的排放流程为主线,研究燃煤过程汞的形态转化与排放特性,结合锅炉燃煤烟气净化工艺,讨论汞污染的控制技术。主要内容和结果如下:
     (1)论文研究了燃煤电站常用的烟煤中汞的含量,分析汞含量与煤种的相关性,发现煤中汞含量与硫含量具有较强的相关性。本研究采用小型管式炉进行燃煤排放烟气中汞的形态分布模拟实验。在600℃的燃烧条件下,实验煤种汞的析出率大于95%。模拟实验还发现,烟气中二价汞(Hg~(2+))所占的比例随燃烧温度、燃烧供气流量的增加而上升;零价汞(Hg~0)所占的比例则随燃烧温度、燃烧供气流量的增加而下降。
     (2)本研究采用Ontario-Hydro Method(OH法),在300MW工业燃煤锅炉进行烟气中汞的浓度水平分析,同时取样分析锅炉的煤、底渣、飞灰等固体样品,以及脱硫塔进出口、曝气池之后海水样品中的汞含量。研究发现,电站燃煤排放烟气中气态汞的浓度在12.63-15.71μg/Nm~3之间变动,飞灰中的汞含量与煤中的汞含量大体相当,底渣中的汞含量则仅为飞灰含汞量的1/10-1/100左右。脱硫曝气池的海水在排向海域前的汞含量仍为新鲜海水的5-6倍左右。经物料衡算,单位发电量产生的汞源强约为62.40μg/kW·h,实测数据计算结果表明,单位发电量排向大气环境的汞约13.78μg/kW·h,以灰渣形式排向环境的汞约3.53 gg/kW·h,排向海水环境的汞约33μg/kW·h。
     (3)本研究利用了OH法的分析数据以及对飞灰粒径和残碳量的测试结果,并采用连续在线测汞仪(CEMs)监测不同运行工况下烟气中汞的排放浓度变化趋势,同时结合烟气净化设施(FCDs)的工艺特点,分析FCDs工艺及运行方式对汞排放特性的影响。研究发现:在选择性催化还原(SCR)脱硝催化剂的作用下,烟气中83.4%的气态Hg~0被氧化成气态Hg~(2+),强烈地影响汞的后续排放特性。作为SCR工艺中的还原剂,NH_3不会对烟气中汞的形态变化造成可视性(discemable)的影响。烟气经过静电除尘(ESP)的脱尘作用后,颗粒态汞在烟气总汞中所占的比例由ESP前的5.66%降至ESP后的近似于零,静电除尘对颗粒态汞的去除率几乎达到100%。ESP各电场飞灰吸附汞能力与飞灰粒径呈负相关性,与飞灰残碳量有较强的正相关性。采用烟气海水(SW-FGD)脱硫装置时,海水对烟气中汞的洗脱率高达73.6%,海水转移了本应排向大气的汞污染物。本研究中SCR+ESP+SW-FGD的FCDs组合方式对烟气中汞的脱除率达74.1%。因此认为,烟气净化设施能有效地削减燃煤过程汞的向大气的排放量,有必要充分利用现有烟气净化设施优先控制燃煤锅炉烟气中汞向大气的排放。
     (4)本研究采用金丝捕汞法富集脱硫海水曝气池逸出的汞,考察脱硫海水曝气工艺对汞向大气释放的影响。曝气池上空气体中汞的浓度平均值为10.01ng/m3,高出当地背景值的20倍以上。汞的浓度还与曝气池海水中汞的质量浓度、曝气强度呈正相关性。研究还发现,汞的浓度在曝气池周边的垂直高度上呈现递减的规律。曝气池上空汞的浓度在白昼时段高于夜间时段,并在中午日光照射较强的时段出现峰值,光致还原对曝气池海水中的汞释放起到了促进作用。
     (5)本研究建立了三维水动力数学模型,采用具有二次精度的六节点三角形单元,并利用粗细网格共存及多套网格一次剖分的非结构化网格技术,模拟和预测脱硫海水中汞在附近海域的排放规律,通过对排水口附近海域海水中汞含量的实地监测,验证预测模型的准确性。
Mercury has been identified as a persistent pollutant with characteristics of high toxicity, volatility, bioaccumulation and mutagenicity to human health and environment. Since the coal contains mercury, the coal-fired power plants have become the main source for anthropogenic discharge of mercury to the atmosphere. The emission features and the control of mercury exhausted from coal-fired power plants are currently an active topic and highlight interest of research.
     This research chose the mercury emitted from coal combustion as the objective, investigated the exhaust process of flue gas from the large-scale industrial boiler equipped with flue gas cleaning devices (FCDs) in the power plant near sea, and focused on the mercury species transformation and emission characteristic during coal-firing. Based on the study results, the mercury control measures are also discussed. The detail information is as follows:
     (1) The mercury contents in bituminous coals were analyzed. It is observed that the mercury contents had a positive correlation with the sulphur contents in coal. A small-scale tube-furnace was assemblied for simulating mercury species transformation in flue gas. The result showed that the release percentage of mercury from coal was higher than 95% under 600℃combustion temperature. The content of Hg~(2+) in the flue gas increased with the increase of combustion temperature and air flow rate, while Hg°decreased with the increase of the combustion temperature and air flow rate.
     (2) Ontario-Hydro (OH) method had been applied to determine the mercury concentrations and species in the flue gas emitted from a 300 MW coal-fired boiler. Mercury concentrations in raw coal, bottom ash and fly ash of the boiler, seawater at the inlet and outlet of SO_2 absorption reactor and the drainage of aeration sink were also analyzed. The results indicated the concentrations of mercury in flue gas ranged from 12.63μg/Nm~3 to 15.71μg/Nm~3, the mercury content in fly ash was close to that in coal, while in bottom ash was only about 1%-10% of that in fly ash. The mercury concentration in the seawater of aeration sink drainage was 5-6 times higher than that in fresh seawater. The calculation from materiel equilibrium showed that the mercury produced by a unit of electric-power generation was 62.40μg/kW·h, and the field experimental data revealed that the amounts of mercury exhausted to atmosphere, remained in fly ash and bottom ash, discharged into seawater for flue gas de-sulphurization (FGD) were 13.78, 3.53, 33μg/kW·h, respectively.
     (3) The data of OH experiment, the analysis of remnant carbon contents and sizes distribution of particulate in fly ash, and the concentration variety of mercury in flue gas supervised by an on-line continuous emission monitor (CEMs) were employed to further study the effects of FCDs on mercury emission from coal-fired boiler. It is found that Selective Catalytic Reduction (SCR) De-NOx device had strong impact on the mercury species transformation, and the conversion rate of Hg~0 to Hg~(2+) by the catalyst was as high as 83.4%. As the reducing reagent in SCR technology, NH_3 had no discernable effect on the concentration and species of mercury in the flue gas. After passing through the electrostatic precipitator (ESP), particulate mercury in the flue gas dropped from 5.66% of the total amount at the inlet of the ESP to zero at the outlet, and the removal efficiency of particulate mercury by the ESP was almost 100%. The amounts of mercury in the fly ash in the hoppers of the ESP had a negative correlation with the particulate sizes, on the other hand, showed a positive correlation with the remnant carbon contents in the fly ash. With seawater flue gas de-sulphurization (SW-FGD), the removal efficiency of mercury was as high as 73.6%. The amount of mercury that could have been exhausted into the atmosphere if without the SW-FGD, however, was discharged into the seawater. The total removal of mercury by FCDs combined with SCR+ESP+SW-FGD reached 74.1%. The study showed that FCDs in coal-fired power plant play an important role on mercury emission, which is feasible to be applied for cutting down the amounts of mercury discharged into the atmosphere.
     (4) The method of gold amalgamation was employed to determine the concentration of total gaseous mercury (TGM) in the air above the aeration sink for the SW-FGD, and mercury concentration in the seawater of the sink was also analyzed for evaluating the effect of aeration technology on the amount of mercury released. The results showed that the average concentration of TGM was about 10.01 ng/m~3, which was 20 times higher than that of local background. The concentrations of TGM above the aeration sink presented a positive correlation with mercury concentrations in seawater of the FGD and aeration intensity. The experiment also found that the TGM concentrations decreased as the vertical height near the aeration sink increased, and the TGM concentrations above the aeration sink in daytime, especially during noon time, were higher than those at night, which could be explained by the photo-reduction of mercury.
     (5) In order to evaluate the discharge of mercury from sea water of the FGD into the sea areas nearby, a three dimensional hydrodynamic numerical model with 6-node triangular element and two order shape function were developed. The model simulated and predicted the concentration distribution of mercury from seawater of the FGD into the sea. The field study was also carried out for verifying the model.
引文
[1] Kudo A., Fujikawa Y., Miyahara S., et al. Lessons from Minamata mercury pollution, Japan-after a continuous 22 years of observation [J]. Water Science and Technology, 1998, 38 (7): 187-193.
    [2] 张磊,王起超,邵志国.第二松花江下游居民发汞水平及影响因素分析[J].环境科学研究,2005,18(6):113-115,125.
    [3] 孙晓静,王起超,邵志国.第二松花江中下游沉积物汞的时空变化规律[J].环境科学,2007,28(5):1062-1066.
    [4] 陶铿.化工生产中汞污染的防治[M].石油化学工业出版社,1978.
    [5] 喜田村正次 著,侯召棠 译.汞[M].北京:原子能出版社,1988.
    [6] Tan H., He J., Lindqvist O., Xiao Z.. Mercury emission from its production in Guizhou province, China [J]. Guizhou Science, 1997, 15: 112-117.
    [7] 丁振华,王文华,瞿丽雅,等.贵州万山汞矿区汞的环境污染及对生态系统的影响[J].环境科学,2004,25(2):111-114.
    [8] 赵毅,马双忱,华伟,庞庚林.电厂燃煤过程中汞的迁移转化及控制技术研究[J].环境污染治理技术与设备,2003,4(11):59-63.
    [9] Brown T.D., Smith D.N.. Mercury measurement and its control: What we know, have learned, and need to further investigate [C]. Presented at the Air & Waste Management. Association's 92~(nd) Annual Meeting And Exhibition, St. Louis, Missouri, June 1999.
    [10] EPA, Standards of performance for new and existing stationary sources: electric utility steam generating units [S]. March 15, 2005.
    [11] EPA, Rule to reduce interstate transport of fine particulate matter and ozone (Clean Air Interstate Rule) [S]. March 10, 2005.
    [12] Development of an EU mercury strategy [R]. Commission of the European Communities. Brussels, Juanary 28. 2005.
    [13] Xu X., Yang X., Miller D.R., et al. A regional scale modeling study of atmospheric transport and transformation of mercury.Ⅰ.model development and evaluation [J]. Atmospheric Environment, 2000, 34: 4933-4944.
    [14] Bullock O.R., Brehme K.A.. Atmospheric mercury simulation using the CMAQ Model: formulation description and analysis of wet deposition results [J]. Atmospheric Environment, 2002, 36: 2135-2146.
    [15] Hylander L.D., Meili M.. 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions [J]. Science of the Total Environment, 2003, 304: 13-27.
    [16] Wagemann R., Trebacz E., Boila G., Lockhart W.L.. Mercury species in the liver of ringed seals [J]. Science of the Total Environment, 2000, 261: 21-32.
    [17] Laudal D.L., Brown T.D., Nott B.R.. Effects of flue gas constituents on mercury speciation [J]. Fuel Processing Technology, 2000, (65-66): 157-165.
    [18] Garcia H.J., Garcia R.L., Jara M.M.E., et al. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak bay, Sonora, Mexico [J]. Marine Pollution Bulletin, 2005, 50: 733-739.
    [19] Leea S.H., Suh J.K.. Determination of mercury in tuna fish tissue using isotope dilution inductively coupled plasma mass spectrometry [J]. Microchemical Journal, 2005, 80: 233-236.
    [20] Schroeder W.H., Munthe J.. Atmospheric mercury- An overview [J]. Atmospheric Environment, 1998, 32 (5): 809-822.
    [21] Keeler G., Glinsorn G., Pirrone N.. Particulate mercury in the atmosphere: its significance, transport, transformation and sources [J]. Water, Air and Soil Pollution, 1995, 80: 159-168.
    [22] Lamborg C.H.. Atmospheric mercury in northern Wisconsin: sources and species [J]. Water, Air and Soil Pollution, 1995, 80: 189-198. [23] U.S. EPA. Mercury study report to Congress [R]. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, U.S. Government Printing Office: Washington, DC, December 1997.
    [24] Munthe J., Wangberg I., Pirrone N., et al. Intercomparison of methods for sampling and analysis of atmospheric mercury species [J]. Atmospheric Environment, 2001, 35: 3007-3017.
    [25] Mason R.P., Fitzgerald W.F., Morel F.M.M.. The biogeochemical cycling of elemental mercury: Anthropogenic influence [J]. Geochimica et Cosmochimica Acta, 1994,58:3191-3198.
    [26] Seigneur C, Wrcol J., Constantinou E.. A chemical kinetic mechanism for atmospheric inorganic mercury [J]. Environmental Science and Technology, 1994, 28: 1589-1597.
    [27] Lindberg S.E., Stratton W.J.. Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air [J]. Environmental Science and Technology, 1998, 32: 49-57.
    [28] Fitzgerald W.F., Mason R.P., Vandal G.M.. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions [J]. Water, Air and Soil Pollution, 1991, 55: 745-767.
    [29] Munthe J.. The atmospheric chemistry of mercury: Kinetic studies of redox reactions. In: Mercury Pollution: Integration and Synthesis [M]. Boca Raton: Lewis Publishers, 1994, 273-280.
    [30] Hall B.. The gas phase oxidation of elemental mercury by ozone [J]. Water, Air and Soil Pollution, 1995, 80: 301-315.
    [31] Alexandre J.P., Garcia E., Amyot M., et al. Mercury distribution, partitioning and speciation in coastal vs. inland high Arctic snow. [J]. Geochimica et Cosmochimica Acta, 2007, 71: 3419-3431.
    [32] Rasmussen P.E.. Current methods of estimating atmospheric mercury fluxes in remote areas [J]. Environmental Science and Technology, 1994,28: 2233-2241.
    [33] Frank D.C., Alexandra S., Greg L., Bill J.V.H.. GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) in the Canadian Arctic at Alert, Nunavut, Canada (February-June 2005) [J]. Atmospheric Environment, 2007, 41: 6527-6543.
    [34] Downs S.G., Macleod C.L., Lester J.N.. Mercury in precipitation and its relation to bioaccumulation in fish: A literature review [J]. Water, Air and Soil Pollution, 1998, 108 (1-2): 149-187.
    [35] Sheppard D.S.. Mercury content of Antarctic Iceland-snow: further results [J]. Atmospheric Environment, 1991, 25A: 1578-1600.
    [36] Levin L., Allan M.A., Yager J.. Assessment of source-receptor relationships for utility mercury emissions. Proceedings of the air quality Ⅱ: Mercury [C]. Trace Elements, and Particulate Matter Conference. McLean: VA, 2000. A 5-3.
    [37] Fitzgerald W.F., Engstrom D.R., Mason R.P., Nater E.A.. The case for atmospheric mercury contamination in remote areas [J]. Environmental Science and Technology, 1998, 32: 1-7.
    [38] 陈怀满.土壤-植物系统中的重金属污染[M].北京,科学出版社.1996。
    [39] 朱小翠,青长乐,皮广洁.土壤汞形态及其影响因素研究[J].土壤学报,1996,33(1):94-100.
    [40] 戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,30(4):75-79.
    [41] Wang D., Qing C, Guo T., et al. Effects of humic acid on transport and transformation of mercury in soil-plant systems [J]. Water, Air and Soil Pollution, 1997, 95 (1-4): 35-43.
    [42] Gabriel M.C., Williamson D.G.. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment [J]. Environmental Geochemistry and Health, 2004, 26 (4): 421-434.
    [43] Amyot M., Morel F.M.M., Ariya P.A.. Dark oxidation of dissolved and liquid elemental mercury in aquatic environments [J]. Environmental Science and Technology, 2005, 39 (1): 110-114.
    [44] Parkpoin P., Thongraar W., DeLuane R.D., et al. Adsorption and desorption of mercury by Bangpakong river sediments as influenced by salinities. [J] Journal of Environmental Science and Health Part A- Toxic/Hazardous Substances and Environmental Engineering, 2001, 36 (5): 623-640.
    [45] Benoit J.M., Gilmour C.C., Mason R.P., et al. Behavior of mercury in the Patuxent River estuary [J]. Biogeochemistry, 1998,40 (2-3): 249-265.
    [46] Gilmour C.C., Riedel G.S., Ederington M.C., et al. Methylmercury concentrations and production rates across a tropic gradient in the northern Everglades [J]. Biogeochemistry, 1998,40 (2-3): 327-345.
    [47] Kehrig H.A., Pinto F.N., Moreira I., Malm O.. Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil [J]. Organic Geochemistry, 2003, 34 (5): 661-669.
    [48] Wolfenden S., Charnock J.M., Hilton J., et al. Sulfide species as a sink for mercury in lake sediments [J]. Environmental Science and Technology, 2005, 39 (17): 6644-6648.
    [49] Holmes J., Lean D.S.. Factors that influence methylmercury flux rates from wetland sediments [J]. Science of the Total Environment, 2006, 368 (1): 306-319.
    [50] Berman M., Bartha R.. Control of the methylation process in a mercury polluted aquatic sediment [J]. Environmental Pollution Series B. Chemical and Physical, 1986, 11:41-53.
    [51] 王云彩.汞污染对人体健康的危害[J].生活与健康,2004,3:21-23.
    [52] Carpi A.. Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere [J]. Water, Air and Soil Pollution, 1997, 98: 241-254.
    [53] 卢健民,蔺玉华,李怀明.重金属对草鱼胚胎及鲤鱼苗的毒性研究[J].1995,8(1):55-63.
    [54] Rand G.. Fundamentals of Aquatic Toxicology [Z]. Taylor & Francis, Washington, DC, 1995. http:www.epa.gov/otaa/m6.html.
    [55] 王定勇,牟树森,青长乐.大气汞对土壤-植物系统汞累积的影响研究[J].环境科学学报,1998,18(2):194-199.
    [56] 迟清华.汞在地壳、岩石和疏松沉积物中的分布[J].地球化学,2004(33):641-646.
    [57] Swaine D.J.. Trace elements in coal [M]. London: Butterworths, 1990.
    [58] Nymazal J.. Algaeand element cycling in wetlands [M]. Lewis Publisher, 1995.
    [59] 周义平.老厂矿区煤中汞的成因和赋存形态[J].煤田地质和勘探,1994,22(3),17-21.
    [60] 张军营.煤中潜在毒害微量元素富集规律及其污染性抑制研究[D].博士学位论文.北京:中国矿业大学,1999.
    [61] Ruth R.R., Gluskoter H.J., Kennedy E.J.. Mercury content of Illinois coals Ⅲ [J]. State Geol. Surv. Environ. Geol. Notes, 1976, 43, 15-20.
    [62] Dvornikov, A.G.. Mercury modes of occurrence in Donetsk basin coals [J]. Compt. Rend. USSR Acad. Sci., 1981,257 (5):1214-1216.
    [63] Cahill R.A., Shiley R.H.. Forms of trace elements in coal [C]. Proc. Int. Conf. Coal Sci., Essen, 1981, 751-755.
    [64] Finkelman R.B.. Modes of occurrence of trace elements in coal, US Geol. Surv [R]. Open file Report, 1981, 81-99, 312.
    [65] Feng X, Hong Y.. Modes of occurrence of mercury in coals from Guizhou, People's Republic of China [J]. Fuel, 1999, 78: 1181-1188.
    [66] 赵峰华,煤中有害微量元素分布赋存机制及燃烧产物淋滤实验研究[D].博士学位论文,北京:中国矿业大学研究生部,1997.
    [67] 刘晶,郭欣,陆晓华,等.煤中痕量砷、汞的分析[J]华中理工大学学报,2000,28(7):71-73.
    [68] Spears D.A., Martinez M.R.. Geological and mineralogical characteristics of a power station feed-coal, Eggborough, England [J]. International Journal of Coal Geology, 1993, 22 (2): 1-20.
    [69] 聂爱国,龙江平.贵州西南地区高砷煤与低温元素矿化的关系[J].贵州地质,1995,12(4):317-321.
    [70] Hall B, Schager P, Lindqvist O.. Chemical reactions of mercury in combustion flue gases [J]. Water, Air and Soil Pollution, 1991, 56: 3-14.
    [71] Sandelin K, Backman R.. Equilibrium distribution of arsenic, chromium and copper when burning impregnated wood [J]. Environmental Science and Technology, 1999, 33: 4508-4515.
    [72] Gibb W.H, Clarke F., Mehta A.K.. The fate of coal mercury during combustion [J]. Fuel Processing Technology, 2000, 65: 365-377.
    [73] 陈冰如,钱琴芳,杨亦易,等.我国一百零七个煤矿样中微量元素的浓度分布[J].科学通报,1985,1:27-29.
    [74] 冯新斌,洪业汤,倪建宇.等.贵州煤中汞的分布、赋存状态及对环境的 影响[J].煤田地质与勘探,1998,26(2):12-14.
    [75] 冯新斌,洪业汤,洪冰.等.煤中汞的赋存状态研究[J].矿物岩石地球化学通报,2001,20(2):71-78.
    [76] 王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,(4):318-321.
    [77] Belkin H.E., Finkelman R.B., Zheng B.. Mercury in People's Republic of China coal [J]. Geological Society of America, Abstract, 2005, 37 (7), 48.
    [78] Meij R.. The fate of mercury in coal-fired power plants and the influence of wet flue gas de-sulphurization [J]. Water, Air and Soil Pollution, 1991, 56: 21-33.
    [79] NJDEPE. Task force on mercury emissions standard setting: Final report on municipal solid waste, Technical and regulatory issues, Vol. Ⅲ [R]. New Jersey Department of Environmental Protection and Energy, 1993.
    [80] Quick J.C., Brill T.C., Tabet D.E.. Mercury in US coal: Observations using the COALQUAL and ICR data [J]. Environmental Geology, 2003,43, 247-259.
    [81] Bragg L.J., Oman J.K., Tewalt S.J.. et al. US Geological Survey Coal Quality (COALQUAL) Database: Version 2.0 [R]. US Geol. Surv. 1998 Open File Rep. 97-134.
    [82] O'neil B.T., Tewalt S.J., Finkleman R.B.. Mercury concentration in coal-unraveling the puzzle [J]. Fuel, 1999, 78: 47-74.
    [83] Kilgroe J.. EPA mercury emission control study: preliminary results, Presented at the Air Quality Ⅱ: Mercury [R]. Trace Elements, and Particulate Matter Conference, Mclean, VA, Sept. 19-21, 2000, Paper A4-1.
    [84] Chu P., Goodman N., Behrens C, Roberson R.. Total and speciated mercury emissions from U.S. coal fired power plants, proceedings of the Air Quality Ⅱ: Mercury [R]. Trace Elements, and Particulate Matter Conference, Mclean, VA, Sept. 19-21, 2000, Paper A34.
    [85] 冯荣. 烟气中Hg的氧化机理的研究工作[J].工程热物理学报,2002,23(3:) 384-387
    [86] Edwards J.R.. A study of gas phase mercury speciation using detailed chemical kinetics [J]. Journal of Air & Waste Management Association, 2001, 51: 869-877.
    [87] Prestbo E.M., Bloom N.S.. Mercury speciation adsorption (MESA) method for combustion flue gas: Methodology, artifacts, intercomparision, and atmospheric implications [J]. Water, Air and Soil Pollution, 1995, 80: 145-158.
    [88] Ratafia-Brown J.A.. Overview of trace element partitioning in flames and furnaces of utility coal fired boilers [J]. Fuel Processing Technology, 1994, 39(1-3): 259-263.
    [89] Senior C.L., Sarofim A.F., Zeng T., et al. Gas phase transformation of mercury in coal-fired power plants [J]. Flue Processing Technology, 2000, (63): 197-213.
    [90] Kevin C.G., Christopher J.Z.. Mercury transformation in coal combustion flue gas [J]. Fuel Processing Technology, 2000, 65: 289-310.
    [91] Kevin C.G., Christopher J.Z., Edwin S.O., et al. Evaluating mercury transformation mechanisms in a laboratory-scale combustion system [J]. Science of the Total Environment, 2000, 261: 149-155.
    [92] Bergan T.. Mercury in the global troposphere [J]. Atmospheric Environment, 1999,33:1575-1585.
    [93] 中华人民共和国国家标准,煤中汞的测定方法[S].GB/T 16659-1996.
    [94] 孙沂,几种汞的分析方法简介[J].环境化学,1984,2,73-78.
    [95] 郭欣,贾小红,郑楚光,等.采用微波消解原子荧光光谱法测定煤中的汞[J].华中科技大学学报(自然科学版),2003,31(11):66-68.
    [96] 国家海洋局908专项办公室编.海洋化学调查技术规程[M].海洋出版社,2006.
    [97] EPA Method 29, Determination of metals emissions from stationary sources, 40 CFR Part 61, Appendix B [S]. U.S. Government Printing Office, Washington, DC, February, 2000: 1461-1531.
    [98] EPA Method 1 through 5, Code of Federal Regulation, Title 40, Part 60, Appendix A [S]. July, 1,1991.
    [99] EPA Method 101 A, Determination of particulate and gaseous mercury emissions from sewagesludge incinerators, 40 CFR Part 61, Appendix B [S]. U.S. Government Printing Office, Washington, DC, February, 2000: 1731-1754.
    [100] EPA Method 324. Determination of vapor phase flue gas mercury emissions from stationary sources [S]. Washington, DC, January 30, 2004.
    [101] Standard test method for elemental, oxidized, particle-bound, and total mercury in flue gas generated from coal-fired stationary sources (Ontario Hydro Method), ASTM Standard [S]. Washington, DC, September 2001.
    [102] Laudal D.L., Thompson J.S.,Dunham G.E.,et al. Mercury studies, Appendix B. Final report for U.S. Environmental Protection Agency Cooperative Agreement No. R-828323-01 [R]. U.S. Department of Energy National Energy Technology Laboratory Cooperative Agreement No. DE-FC26-98FT40321, and Ontario Power Generation. Energy & Environmental Research Centre: Grand Forks, ND, Nov 2002.
    [103] Power plant validation of the mercury speciation sampling method [S]. EPRI TR-112588, 1999.
    [104] USEPA. Environmental technology verification programe [Z]. Mercury emission monitors. http://www.epa.gov/etv/verifications/vcenter1-11.html.
    [105] 陈乐恬,张晓山,林玉环.大气环境中汞的形态及其分析方法[J].环境化学,1999,18(6):584-588.
    [106] 方凤满,王起超,郝庆菊.大气汞的来源、形态及环境过程研究现状[J].环境导报,2001,2:18-21.
    [107] Bloom N.S., Prestbo E.M., Hall B., et al. Determination of atmospheric Hg by collection on iodated carbon, acid digestion and CVAFS detection [J]. Water, Air and Soil Pollution, 1995, 80: 1315-1318.
    [108] 冯新斌,洪业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的痕量气态总汞[J].中国环境监测,1997,13(3):9-11.
    [109] Golubeva N., Burtseva L., Matishov G.. Measurements of mercury in the near-surface layer of the atmosphere of the Russian Arctic [J]. Science of the Total Environment, 2003, 306: 3-9.
    [110] Dumarey R., Heindryckx R., Dams R., et al. The determination of volatile Hg compounds in air with Coleman MAS [J]. Analytica Chimica Acta, 1979, 107: 159-167.
    [111] Sholupov S., Pogarev S., Ryzhov V., et al. Multifunctional Zeeman mercury analytical system RA-915~+: practical experience and future trends [C]. In: Proceedings of the 7~(th) international conference on mercury as global pollutant. Ljubljana, 28 June-2 July 2004 (on CD, Paper No. 127)
    [112] Schroeder W.H., Keeler G., Kock H., et al. International field intercomparision of atmospheric mercury measurement methods [J]. Water, Air and Soil Pollution, 1995, 80: 611-620.
    [113] Urba A., Kvietkus K., Sakalys J., et al. A new sensitive and portable mercury vapor analyzer GARDIS-1A [J]. Water, Air and Soil Pollution, 1995, 80: 1305-1309.
    [114] Karatza D., Lancia A., Musmarra D.. Fly ash capture of mercuric chloride vapors from exhaust combustion gas [J]. Environmental Science and Technology, 1998, 32 (24): 3999-4004.
    [115]Hower J.C., Maroto-Valer M.M., Taulbee D.N., Sakulpitakphon T.. Mercury capture by distinct fly ash carbon forms [J]. Energy & Fuels, 2000, 14 (1): 224-226.
    [116] Rubel A.M., Hower J.C., Mardon S.M., Zimmerer M.J.. Thermal stability of mercury captured by ash [J]. Fuel, 2006, 85, 2509-2515.
    [117] Sakulpitakphon T., Hower J.C., Trimble A.S., et al. Mercury capture by fly ash: Study of the combustion of a high-mercury coal at a utility boiler [J]. Energy & Fuels, 2000,14 (3): 727-733.
    [118] Hower J.C., Finkelman R.B., Rathbone R.F., Goodman J.. Intra-and inter-unit variation in fly ash petrography and mercury adsorption: examples from a western Kentucky power station [J]. Energy & Fuel, 2000, 14 (1): 212-216.
    [119] Kobayashi, T.. Oxidation of metallic mercury in aqueous solutions by hydrogen peroxide and chlorine [J]. Journal of Japan Society for Atmospheric Environment, 1987, 22: 230-234.
    [120] Zhao L., Rochelle G.T.. Mercury absorption in aqueous oxidants catalyzed by mercury (II) [J]. Industrial & Engineering Chemistry Research, 1998, 37 (2): 380-387.
    [121] Scala F.. Simulation of Mercury capture by activated carbon injection in incinerator flue gas. 1. In duct removal [J]. Environmental Science and Technology, 2001, 35 (21): 4367-4372.
    [122] Scala F.. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal [J]. Environmental Science and Technology, 2001, 35 (21): 4373-4378.
    [123] Carey T., Hargrove O., Richardson C. Factors affecting mercury control in utility flue gas using activated carbon [J]. Journal of Air & Waste Management Association, 1998,48: 1166-1174.
    [124] Rong Y., David T.L., Leslie T., et al. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption [J]. Fuel, 2004, 83: 2401-2409.
    [125] Chang J.C.S., Ghorishi S.B.. Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber [J]. Environmental Science and Technology, 2003, 37 (24): 5763-5766.
    [126] Livengood C.D., Mendelsohn M.H.. Progress for combined control of mercury and nitric oxide [C]. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta.
    [127] McLarnon C.R., Horvath M.L., Boyle P.D.. Electro-catalytic oxidation technology applied to mercury and trace elements removal from flue gas [R]. Presented at Conference on Air Quality Ⅱ McLean, VA. September 20,2000.
    [128] McLarnon C.R., Granite E.J., Pennline H.W.. The PCO process for photochemical removal of mercury from flue gas [J]. Fuel Processing Technology, 2005, 87: 85-89.
    [129] Pirrone N., Keeler G.J., Nriagu J.O.. Regional differences in worldwide emissions of mercury to the atmosphere [J]. Atmosphere Environment, 1996, 30 (17): 2981-2987.
    [130] UNEP Chemicals. Global mercury assessment [R]. Geneva, Switzerland, December, 2002.
    [131] Zhang M., Zhu Y., Deng R.. Evaluation of mercury emissions to the atmosphere from coal combustion [J]. Chinna AMBIO, 2002, 31: 482-484.
    [132] 赵小平.“十一五”电力工业发展的政策取向[J].电力生产管理,2007,5:28-31.
    [133] Lipfert F.W., Moskowitz P.D., Ftherakis V., et al. Assessment of adult risks of paresthesia dueto mercury from coal combustion [J]. Water, Air and Soil Pollution, 1995, 80 (1-4): 11-39.
    [134] 姚彤.烟气海水脱硫工艺在我国的应用状况及发展前景[J].工程建设与设计,2004,(8):6-8.
    [135] US Environmental Protection Agency. Control of mercury emissions from coal-fired electric utility boilers: interim report [R]. EPA2600/R2012109. Washington DC: USEPA, 2002.
    [136] Pavlish J.H., Sondreal E.A., Mann M.D., et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003, 82 (2-3): 89-165.
    [137] Control of mercury emissions from coal fired-electric utility boilers: An update [R]. Air Pollution Prevention and Control Division, National Risk Management Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency. Research Triangle Park, NC, February 18, 2005.
    [138] DOE Selects new projects to test mercury emissions controls [Z]. http://www.epri.com.
    [139] 任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D].博士学位论文.杭州:浙江大学,2003.
    [140] 石祥建.飞灰对烟气中汞形态转化的影响及测量技术研究[D].硕士学位论文.杭州:浙江大学,2006.
    [141] 周劲松,王光凯,骆仲泱,岑可法.600 MW煤粉锅炉汞排放的试验研究[J].热能动力工程,2006,21(6):569-572.
    [142] 郭欣.煤燃烧过程中汞、砷、硒的排放与控制研究[D].博士学位论文.武汉:华中科技大学,2006.
    [143] 江贻满,段钰锋,杨祥花,等.ESP飞灰对燃煤锅炉烟气汞的吸附特性[J].东南大学学报(自然科学版),2007,37(3):437-440.
    [144] 任建莉,周劲松,骆仲泱,等.新型吸附剂脱除烟气中气态汞的试验研究[J].中国电机工程学报,2007,27(2):48-53.
    [145] 高洪亮,王向宇,周劲松.煤添加石灰石对燃煤电站汞排放的影响[J].电站系统工程,2007,23(4):8-1O.
    [146] 李英峰.海水烟气脱硫工艺排水对区域海水的影响[J].电力环境保护,2000,16(3):10-13.
    [147] 孙向彤,何锦林,谭红.贵州红枫湖水面挥发性汞释放通量的测定[J].湖泊科学,2001,13(1):49-92.
    [148] Costa M., Liss P.. Photoreduction and evolution of mercury from seawater [J]. Science of the Total Environment, 2000, 261 (1-3): 125-135.
    [149] 黄小平.潮汐河口区河汊与干流之间污染物输移过程模拟方法研究[J].海洋环境科学,1998,17(4):54-58,69.
    [150] 王学昌,娄安刚,郑丙辉,等.不同方式污水排海对海水水质的影响[J].海洋环境科学,2002,21(3):57-60.
    [1] 煤样的工业分析,GB212-1991[S].
    [2] 煤中全硫的测定方法,GB214-1996[S].
    [3] 周劲松,王光凯,骆仲泱,岑可法.600 MW煤粉锅炉汞排放的试验研究[J].热能动力工程,2006,21(6):569-572.
    [4] Standard test method for elemental, oxidized, particle-bound, and total mercury in flue gas generated from coal-fired stationary sources (Ontario Hydro Method), ASTM Standard [S]. September, 2001.
    [5] 王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,(4):318-321.
    [6] Belkin H.E., Finkelman R.B., Zheng B.. Mercury in People's Republic of China coal [J]. Geological Society of America. Abstract, 2005, 37 (7), 48.
    [7] Yudovich Y.E., Ketris M.P.. Mercury in coal: a review Part 1. Geochemistry [J]. International Journal of Coal Geology, 2005, 62: 107-134.
    [8] O'neil B.T., Tewalt S.J., Finkleman R.B.. Mercury concentration in coal-unraveling the puzzle [J]. Fuel, 1999, 78: 47-74.
    [9] 冯新斌,洪业汤.中国燃煤向大气排放汞量的估算[J].煤矿环境保护,1996,10(3):10-13,24.
    [10] Dai S., Ren D., Tang Y., et al. Concentration and distribution of elements in Late Permian coal from western Guizhou Province, China [J]. International Journal of Coal Geology, 2005, 61: 119-137.
    [11] Zheng L., Liu G., Chou C Abundance and modes of occurrence of mercury in some low-sulfur coals from China [J]. International Journal of Coal Geology, 2007 (in press).
    [12] 张军营,郑楚光,刘晶,刘海明.燃煤易挥发微量重金属元素行为的试验研究[J].工程热物理学报,2003,24(6):1043-1046.
    [13] 余亮英,陆继东,张娟.煤燃烧过程中痕量元素分布规律的实验研究[J].华中科技大学学报(自然科学版),2003,31(11):63-65.
    [14] Rizeq R.G., Hansell D.W., Seeker W.R.. Predictions of metals emissions and partitioning in coal-fired combustion systems [J]. Fuel Processing Technology, 1994,39:219-236.
    [15] Hall B., Lindqvist O., Ljung S.E.. Mercury chemistry in simulated gases related to waste incineration conditions [J]. Environmental science and technology, 1990,24(1): 108-111.
    [16] Hall B., Schager P., Ljungstrom E.. The gas phase oxidation of elemental mercury by ozone [J]. Water, Air and Soil Pollution, 1995, 80: 301-315.
    [17] 任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D].博士学位论文.杭州:浙江大学,2003.
    [18] Sliger R.N., Kramlich J.C., Marinov N.M.. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species [J]. Fuel Processing Technology, 2000, (65-66): 423-438.
    [19] Senior C.L., Sarofim A.F., Zeng T., et al. Gas-phase transformations in coal-fired power plants [J]. Fuel Processing Technology, 2000, 63,197-213.
    [1] 国家海洋局908专项办公室编,海洋化学调查技术规程[M].海洋出版社,2006.
    [2] 陈进生.烟气SCR脱硝工艺及特点分析[J].电力环境保护,2006,22(6):40-43.
    [3] 陈进生.300 MW火电机组电除尘器的增效技术改造[J].能源环境保护,2006,20(6):42-44,49.
    [4] 陈进生.烟气海水脱硫工艺及特点分析[J].电力环境保护,2007,23(2):31-34.
    [5] Takahisa Yokoyama, Kazuo Asakura. Mercury emissions from a coal-fired power plant in Japan [J]. Science of the Total Environment, 2000, 259, 97-103.
    [6] 石祥建.飞灰对烟气中汞形态转化的影响及测量技术研究[D].硕士学位论文.杭州:浙江大学,2006.
    [7] 王光凯.燃煤电厂汞排放测试及脱汞产物汞稳定性研究[D].硕士学位论文.杭州:浙江大学,2006.
    [8] 周劲松,王光凯,骆仲泱,岑可法.600 MW煤粉锅炉汞排放的试验研究[J].热能动力工程,2006,21(6):569-572.
    [9] 郭欣,郑楚光,贾小红,等.300 MW煤粉锅炉烟气中汞形态分析的实验研究[J].中国电机工程学报,2004,24(6):185-188.
    [10] 吴来贵.深圳西部电厂4号机组海水脱硫系统监测分析[J].热能动力工程,2003,18(3):200-202.
    [11] 李英峰.海水烟气脱硫工艺排水对区域海水的影响.电力环境保护,2000 16 (3): 10-13.
    [12] Hall B., Schager P., Lindqvist 0.. Chemical reactions of mercury in combustion flue gases [J]. Water, Air and Soil Pollution, 1991, 56 (4): 3-14.
    [13] Meij R... The fate of mercury in coal-fired power plants and the influence of wet flue gas desulphurization [J]. Water, Air and Soil Pollution, 1991, 56 (4): 21-33.
    [14] Kim K.H., Kim M.Y.. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea [J]. Atmospheric Environment, 2000, 34 (20): 3337-3347.
    [1] Pavlish J.H., Sondreal E.A., Mann M.D., et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003, 82 (2-3): 89-165.
    [2] 杨玉颖,解庆红,赵红,张学文.LS230激光粒度仪及其应用[J].现代科学仪器,2002(3):41-43.
    [3] 火力发电厂燃料试验方法-飞灰和炉渣可燃物测定方法[S].DL/T567.6-1995
    [4] 陈进生.烟气SCR脱硝工艺及特点分析[J].电力环境保护,2006,22(6):40-43.
    [5] 陈进生.300 MW火电机组电除尘器的增效技术改造[J].能源环境保护,2006,20(6):42-44,49.
    [6] 陈进生.烟气海水脱硫工艺及特点分析[J].电力环境保护,2007,23(2):31-34.
    [7] Ghorishi S.B., Renninger S.A., Farthing G.A.. Effects of SCR catalyst and wet FGD additive on the speciation and removal of mercury within a forced-oxidized limestone scrubber [C]. Prepared for ICAC Forum'05: Clean Air Technologies & Strategies: Responding to Regulations, Baltimore, MD, March 8-10, 2005.
    [8] Anthony L., Wolfgang F.. Advanced technology to control mercury emission [C]. EPA-DOE-EPRI Mega Symposium, Arlington Heights, Illinois, August 20-24,2001.
    [9] Lee C.W., Srivastava R., Ghorishi, S.B., et al. Study of speciation of mercury under simulated SCR NO_x emission control conditions [C]. Presented at the EPRI-DOE-EPA Combined Air Pollution Control Symposium: The Mega Symposium, Washington, DC, May 19-22, 2003.
    [10] Milobowski M., Amrhein G., Kudlac G., Yurchison, D.. Wet-FGD enhanced mercury control for coal-fired utility boilers [C]. Presented at EPRI-DOE-EPA Combined Air Pollution Control Symposium: The Mega Symposium, August 20-23,2001, Chicago.
    [11] Wang Q., Shen W., Ma Z.. Mercury emissions from coal in China [J]. Environmental Science and Technology, 2000, 34 (13): 2711-2713.
    [12] 朱珍锦,薛来,谈仪.负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究[J].中国电机工程学报,2001,21(7):87-90.
    [13] 江贻满,段钰锋,杨祥花,等.ESP飞灰对燃煤锅炉烟气汞的吸附特性[J].东南大学学报(自然科学版),2007,37(3):437-440.
    [14] Li Z., Wang J.. Mercury distribution in fly ash components [C]. Presented at the Air and Waste Management Association's 90th Annual Conference and Exhibition, Toronto, Ontario, Canada, June 8-13,1997.
    [15] Senior C.L., Johnson S.A.. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants [C]. Presented at the Air and Waste Management Association's 95th Annual Conference and Exhibition, Baltimore, MD, June 23-27, 2002.
    [16] Gibb W.H., Clarke F., Mehta A.K.. The fate of coal mercury during combustion [J]. Fuel Processing Technology, 2000, 65-66: 365-377.
    [17] 郭欣,郑楚光,贾小红,等.300 MW煤粉锅炉烟气中汞形态分析的实验研究[J].中国电机工程学报,2004,24(6):185-188.
    [18] 王立刚,彭苏萍,陈昌和.燃煤飞灰对锅炉烟道气中Hg~0的吸附特性[J].环境科学,2003,24(6):59-62.
    [19] Durham G.E., Dewall R.A., Senior C.L.. Fixed-bed studies of the interactions between mercury and coal combustion fly ash [J]. Fuel Proceeding Technology, 2003,82:197-213.
    [20] Luo J., Hein A.M., Hwang J.. Adsorption of vapor phase mercury on various carbons. Journal of Minerals & Materials Characterization & Engineering, 2004, 3 (1): 13-22.
    [21] Yang H., Pan W.. Transformation of mercury speciation through the SCR system in power plants [J]. Journal of Environmental Sciences, 2007, 19: 181-184
    [22] 刘迎晖,郑楚光.燃煤烟气中汞的形态及其分析方法[J].燃料化学学报,2000,28(5):463-467.
    [23] 杨宏昊,Liu K.,Cao Y.,Pan w.. 电站烟气脱硫装置的脱汞特性试验[J]. 动力工程,2006,26(4):554-557,567.
    [24] 火电厂大气污染物排放标准[S].GB13223-2003.
    [25] 赵小平."十一五"电力工业发展的政策取向[J].电力生产管理,2007,5:28-31.
    [26] Withum J.A.. Mercury emissions from coal-fired facilities with SCR-FGD systems [R]. DOE/NETL's mercury control technology conference. DOE Cooperative Agreement: No. DE-FC26-02NT41589, EPRI Contract NO. EP-P-13687/C6820. December 12, 2006.
    [27] US Environmental Protection Agency. Control of mercury emissions from coal-fired electric utility boilers: interim report [R]. EPA2600/R2012109. Washington DC: USEPA, 2002.
    [1] 冯新斌,洪业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的痕量气态总汞[J].中国环境监测,1997,13(3):9-11.
    [2] Kim K.H., Kim M.Y.. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea [J]. Atmospheric Environment, 2000, 34 (20): 3337-3347.
    [3] Mason R.P., Fitzgerald W.F.. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean [J]. Deep Sea Research, 1993, 40: 1897-1924.
    [4] 何磊.重庆市人为汞散发和自然释放通量研究[D].硕士学位论文.重庆:西南农业大学,2004.
    [5] 冯新斌,Jonas S.,Katarina G.,Oliver L..夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学(D辑),2002,32(7):509-616.
    [6] 仇广乐.贵州省典型汞矿地区汞的环境地球化学研究.博士学位论文[D].贵阳:中国科学院地球化学研究所,2005.
    [7] 孙向彤,何锦林,谭红.贵州红枫湖水面挥发性汞释放通量的测定[J].湖泊科学,2001,13(1):49-92.
    [8] Gardfeldt K., Feng X., Sommar J., et al. Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions [J]. Atmospheric Environment, 2001, 35: 3027-3038.
    [9] Costa M., Liss P.. Photoreduction and evolution of mercury from seawater [J]. Science of the Total Environment, 2000,261 (1-3): 125-135.
    [10] Amyot M, Mierle G., Lean D., McQueen D.J.. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes [J]. Geochim et Cosmochim Acta, 1997, 61: 975-987.
    [1] DHI Staff DHL Water and Environment 2002, No. 1 [M]. Denmark: DHI, Inc. 2002.
    [2] WL Delft Hydraulics. Delft3D-FLOW user manual [M]. Netherlands: Delft Hydraulics, 1999.
    [3] Wai W., Jiang Y., Lu Q.. Large scale finite element modeling and parallel computation of sediment transport in coastal areas [C]. Netherlands: Elsevier Science B. V., 2002. 237-265.
    [4] Jiang Y.. Three dimensional numerical modelling of sediment and heavy metal transport in surface waters [D]. Hong Kong: The Hong Kong Polytechnic University, 2003.